Skip to main content

Advertisement

Log in

Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Trigeminal nerve stimulation (TNS) is a non-invasive neuromodulation method which is increasingly used for its beneficial effects on symptoms of several neuropsychiatric disorders such as drug-resistant epilepsy. Sites and mechanisms of its action are still unknown. The present study was aimed at investigating the physiological effects of acute TNS on rest electroencephalographic (EEG) activity. EEG was recorded with a 19-channel EEG system from 18 healthy adults who underwent 20 min of sham- and real-TNS (cycles of 30 s ON and 30 s OFF) in two separate sessions. EEG was continuously acquired in the 10-min preceding TNS, during TNS in the “OFF” period and throughout 10 min after TNS. Mean frequency, total power over the 0.5–48 Hz frequency range and absolute power for delta, theta, alpha, beta and gamma bands were analyzed by a discrete Fast Fourier Transform algorithm. Interhemispheric and intrahemispheric coherences were also analyzed for each band at different time points. Intra- and interhemispheric coherences were significantly reduced for the beta frequencies only during real-TNS (p = 0.002 and p = 0.006, respectively). No TNS effect on the power spectra of any band was detected. A trend of increase in the mean EEG frequency total power during real-TNS (p = 0.03) and of decrease in interhemispheric gamma coherence after real-TNS (p = 0.01) was observed. Acute TNS may induce a spatially diffuse desynchronization of fast EEG rhythms in healthy adults, this desynchronization may underpin the antiepileptic effect of TNS described by clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744. https://doi.org/10.1038/ncomms9744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelson HW, Isberg M, Flink R, Amandusson A (2014) Trigeminal nerve stimulation does not acutely affect cortical excitability in healthy subjects. Brain Stimul 7(4):613–617. https://doi.org/10.1016/j.brs.2014.04.010

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16(12):2453–2461

    Article  CAS  Google Scholar 

  • Berridge CW, Page ME, Valentino RJ, Foote SL (1993) Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55(2):381–393

    Article  CAS  Google Scholar 

  • Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16(11):1053–1063

    Article  CAS  Google Scholar 

  • Chase MH, Nakamura Y, Clemente CD, Sterman MB (1967) Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res 5(2):236–249

    Article  CAS  Google Scholar 

  • Cook IA, Schrader LM, Degiorgio CM, Miller PR, Maremont ER, Leuchter AF (2013) Trigeminal nerve stimulation in major depressive disorder: acute outcomes in an open pilot study. Epilepsy Behav 28(2):221–226. https://doi.org/10.1016/j.yebeh.2013.05.008

    Article  PubMed  Google Scholar 

  • Cook IA, Espinoza R, Leuchter AF (2014) Neuromodulation for depression: invasive and noninvasive (deep brain stimulation, transcranial magnetic stimulation, trigeminal nerve stimulation). Neurosurg Clin N Am 25(1):103–116. https://doi.org/10.1016/j.nec.2013.10.002

    Article  PubMed  Google Scholar 

  • Cook IA, Kealey CP, DeGiorgio CM (2015) The potential use of trigeminal nerve stimulation in the treatment of epilepsy. Ther Deliv 6(3):273–275. https://doi.org/10.4155/tde.14.120

    Article  CAS  PubMed  Google Scholar 

  • Curró Dossi R, Paré D, Steriade M (1991) Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol 65(3):393–406

    Article  Google Scholar 

  • Dauvergne C, Smit AE, Valla J, Diagne M, Buisseret-Delmas C, Buisseret P, Pinganaud G, Vanderwerf F (2008) Are locus coeruleus neurons involved in blinking? Neurosci Res 61(2):182–191

    Article  Google Scholar 

  • de Curtis M, Gnatkovsky V (2009) Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 50(12):2514–2525. https://doi.org/10.1111/j.1528-1167.2009.02249.x

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Shewmon DA, Whitehurst T (2003) Trigeminal nerve stimulation for epilepsy. Neurology 61(3):421–422

    Article  Google Scholar 

  • DeGiorgio CM, Shewmon A, Murray D, Whitehurst T (2006) Pilot study of trigeminal nerve stimulation (TNS) for epilepsy: a proof-of-concept trial. Epilepsia 47(7):1213–1215

    Article  Google Scholar 

  • DeGiorgio CM, Murray D, Markovic D, Whitehurst T (2009) Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy. Neurology 72(10):936–938. https://doi.org/10.1212/01.wnl.0000344181.97126.b4

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Soss J, Cook IA, Markovic D, Gornbein J, Murray D, Oviedo S, Gordon S, Corralle-Leyva G, Kealey CP, Heck CN (2013) Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology 26(9):786–791. https://doi.org/10.1212/WNL.0b013e318285c11a

    Article  CAS  Google Scholar 

  • Fanselow EE, Reid AP, Nicolelis MA (2000) Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J Neurosci 20(21):8160–8168

    Article  CAS  Google Scholar 

  • Ginatempo F, Pirina P, Melis F, Deriu F (2018) Short-term trigeminal neuromodulation does not alter sleep latency in healthy subjects: a pilot study. Neurol Sci 39(1):145–147

    Article  Google Scholar 

  • Guevara MA, Corsi-Cabrera M (1996) EEG coherence or EEG correlation? Int J Psychophysiol 23(3):145–153

    Article  CAS  Google Scholar 

  • Hu B, Steriade M, Deschênes M (1989) The effects of peribrachial stimulation on reticular thalamic neurons: the blockage of spindle waves. Neuroscience 31:1–12

    Article  CAS  Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic–catecholamine, serotonin, and acetylcholine–neurons. Neuroscience 31(1):37–61

    Article  CAS  Google Scholar 

  • Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242(1):56–92

    Article  CAS  Google Scholar 

  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79(2):81–93

    Article  CAS  Google Scholar 

  • Magis D, Sava S, d’Elia TS, Baschi R, Schoenen J (2013) Safety and patients’ satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly® device in headache treatment: a survey of 2313 headache sufferers in the general population. J Headache Pain 14:95. https://doi.org/10.1186/1129-2377-14-95

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeiros C de, Moraes MF (2014) Focus on desynchronization rather than excitability: a new strategy for intraencephalic electrical stimulation. Epilepsy Behav 38:32–36. https://doi.org/10.1016/j.yebeh.2013.12.034

    Article  Google Scholar 

  • Mercante B, Pilurzi G, Ginatempo F, Manca A, Follesa P, Tolu E, Deriu F (2015) Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans. Exp Brain Res 233(11):3301–3311. https://doi.org/10.1007/s00221-015-4398-2

    Article  CAS  PubMed  Google Scholar 

  • Miller R (2007) Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol 64(1):18–23

    Article  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4):455–473

    Article  CAS  Google Scholar 

  • Moseley BD, Degiorgio CM (2014) Refractory status epilepticus treated with trigeminal nerve stimulation. Epilepsy Res 108(3):600–603. https://doi.org/10.1016/j.eplepsyres.2013.12.010

    Article  PubMed  Google Scholar 

  • Nuwer MR (1988) Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. J Clin Neurophysiol 5(1):1–43

    Article  CAS  Google Scholar 

  • Oken BS, Salinsky MC, Elsas SM (2006) Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin Neurophysiol 117(9):1885–1901

    Article  CAS  Google Scholar 

  • Pilurzi G, Mercante B, Ginatempo F, Follesa P, Tolu E, Deriu F (2016) Transcutaneous trigeminal nerve stimulation induces a long-term depression-like plasticity of the human blink reflex. Exp Brain Res 234(2):453–461. https://doi.org/10.1007/s00221-015-4477-4

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano O, Swett J (1962) Identification of cutaneous and muscular afferent fibers producing EEG synchronization or arousal in normal cats. Arch Ital Biol 100:343–380

    CAS  PubMed  Google Scholar 

  • Pop J, Murray D, Markovic D, DeGiorgio CM (2011) Acute and long-term safety of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav 22(3):574–576. https://doi.org/10.1016/j.yebeh.2011.06.024

    Article  PubMed  Google Scholar 

  • Samuels ER, Szabadi E (2008a) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6(3):235–253. https://doi.org/10.2174/157015908785777229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels ER, Szabadi E (2008b) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6(3):254–285. https://doi.org/10.2174/157015908785777193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117(2):305–312

    Article  CAS  Google Scholar 

  • Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32(5):1001–1013. https://doi.org/10.1016/j.neubiorev.2008.03.014

    Article  PubMed  Google Scholar 

  • Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354

    Article  CAS  Google Scholar 

  • Schoenen J, Vandersmissen B, Jeangette S, Herroelen L, Vandenheede M, Gérard P, Magis D (2013) Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial. Neurology 80(8):697–704. https://doi.org/10.1212/WNL.0b013e3182825055

    Article  PubMed  Google Scholar 

  • Shiozawa P, da Silva ME, Netto GT, Taiar I, Cordeiro Q (2015) Effect of a 10-day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: a phase II, sham-controlled, randomized clinical trial. Epilepsy Behav 44:23–26. https://doi.org/10.1016/j.yebeh.2014.12.024

    Article  PubMed  Google Scholar 

  • Soss J, Heck C, Murray D, Markovic D, Oviedo S, Corrale-Leyva G, Gordon S, Kealey C, DeGiorgio C (2015) A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav 42:44–47. https://doi.org/10.1016/j.yebeh.2014.10.029

    Article  PubMed  Google Scholar 

  • Spreafico R, Amadeo A, Angoscini P, Panzica F, Battaglia G (1993) Branching projections from mesopontine nuclei to the nucleus reticularis and related thalamic nuclei: a double labelling study in the rat. J Comp Neurol 336(4):481–492

    Article  CAS  Google Scholar 

  • Steriade M (1999) Brainstem activation of thalamocortical systems. Brain Res Bull 50(5–6):391–392

    Article  CAS  Google Scholar 

  • Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–1106

    Article  CAS  Google Scholar 

  • Steriade M, Amzica F (2003) Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44(Suppl 12):9–20

    Article  Google Scholar 

  • Trevizol AP, Sato IA, Cook IA, Shiozawa P, Lowenthal R, Cordeiro Q (2016a) Trigeminal nerve stimulation (TNS) for posttraumatic stress disorder and major depressive disorder: An open-label proof-of-concept trial. Epilepsy Behav 60:240–241. https://doi.org/10.1016/j.yebeh.2016.04.014

    Article  PubMed  Google Scholar 

  • Trevizol A, Bonadia B, Gomes JS, Cordeiro Q, Shiozawa P (2016b) Integrity of cognitive functions in trigeminal nerve stimulation trials in neuropsychiatry. Trends Psychiatry Psychother 38(1):60–61. https://doi.org/10.1590/2237-6089-2015-0048

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168

    Article  CAS  Google Scholar 

  • Yamamoto T (1984) Taste responses of cortical neurons. Prog Neurobiol 23(4):273–315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Deriu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginatempo, F., De Carli, F., Todesco, S. et al. Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults. Exp Brain Res 236, 2839–2845 (2018). https://doi.org/10.1007/s00221-018-5338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5338-8

Keywords

Navigation