Skip to main content
Log in

The motor cortical representation of a muscle is not homogeneous in brain connectivity

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Functional connectivity patterns of the motor cortical representational area of single muscles have not been extensively mapped in humans, particularly for the axial musculature. Functional connectivity may provide a neural substrate for adaptation of muscle activity in axial muscles that have both voluntary and postural functions. The purpose of this study was to combine brain stimulation and neuroimaging to both map the cortical representation of the external oblique (EO) in primary motor cortex (M1) and supplementary motor area (SMA), and to establish the resting-state functional connectivity associated with this representation. Motor-evoked potentials were elicited from the EO muscle in stimulation locations encompassing M1 and SMA. The coordinates of locations with the largest motor-evoked potentials were confirmed with task-based fMRI imaging during EO activation. The M1 and SMA components of the EO representation demonstrated significantly different resting-state functional connectivity with other brain regions: the SMA representation of the EO muscle was significantly more connected to the putamen and cerebellum, and the M1 representation of the EO muscle was significantly more connected to somatosensory cortex and the superior parietal lobule. This study confirms the representation of a human axial muscle in M1 and SMA, and demonstrates for the first time that different parts of the cortical representation of a human axial muscle have resting-state functional connectivity with distinct brain regions. Future studies can use the brain regions of interest we have identified here to test the association between resting-state functional connectivity and control of the axial muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asavasopon S, Rana M, Kirages DJ, Yani MS, Fisher BE, Hwang DH, Lohman EB, Berk LS, Kutch JJ (2014) Cortical activation associated with muscle synergies of the human male pelvic floor. J Neurosci 34(41):13811–13818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode netowrk dynamics. J Neurosci 28(6):1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV (2012) Corticostriatal functional connectivity predicts the transition to chronic back pain. Nature Neurosci 15:1117–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazalgett D, Zattara M, Bathien N, Bouisset S, Rondot P (1987) Postural adjustments associated with rapid voluntary arm movements in patients with Parkinson’s disease. Adv Neurol 45:371–374

    Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain nusing echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P (2015) Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res 291:407–413

    Article  PubMed  Google Scholar 

  • Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA (2015) Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia 79(Pt B):246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudrias MH, Lee SP, Svojanovsky S, Cheney PD (2010) Forelimb muscle representations and output properties of motor areas in the mesial wall of rhesus macaques. Cereb Cortex 20(3):704–719

    Article  PubMed  Google Scholar 

  • Buckner RL, Krienen FM, Yeo BTT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neurosci 16(7):832–837

    Article  PubMed  Google Scholar 

  • Chiou SY, Gottardi SE, Hodges PW, Strutton PH (2016) Corticospinal excitability of trunk muscles during different postural tasks. PLoS One 11(1):e0147650

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1998) Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associates, Hillsdale, pp 20–26

    Google Scholar 

  • Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533

    Article  PubMed  Google Scholar 

  • De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2006) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 176:587–594

    Google Scholar 

  • Diener HC, Dichgans J, Guschlbauer B, Bacher M, Langenbach P (1989) Disturbances of motor preparation in basal ganglia and cerebellar disorders. Prog Brain Res 80:481–488

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilisitc cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 37(3):384–400

    Article  PubMed  Google Scholar 

  • Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Halko MA, Eldaief MC, Pascual-Leone A (2012) Measuring and manipulatin brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation. Neuroimage 62:2232–2243

    Article  PubMed  PubMed Central  Google Scholar 

  • Fried I, Katz A, McCarthy G, Sass KJ, Willamson P, Spencer DD (1991) Functional organizaiton of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11(11):3656–3666

    CAS  PubMed  Google Scholar 

  • Grafton C, Laumann TO, Gordon EM, Adeyemo B, Petersen SE (2016) Evidence for two independent factors that modify brain networks to meet task goals. Cell Rep 17:1276–1288

    Article  Google Scholar 

  • Guye M, Parker GJM, Symms M, Boulby P, Wheeler-Kingshott CAM, Salek-Haddadi A, Barker GJ, Duncan JS (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360

    Article  PubMed  Google Scholar 

  • Herwig U, Kolbel K, Wunderlich AP, Thielscher A, von Tiesenhausen C, Spitzer M, Schonfeldt-Lecuona C (2002) Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clin Neurophysiol 113:462–468

    Article  PubMed  Google Scholar 

  • Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151(2):262–271

    Article  PubMed  Google Scholar 

  • Ito K, Nonaka K, Ogaya S, Ogi A, Matsunaka C, Horie J (2016) Surface electromyographic activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults. J Electromyogr Kinesiol 28:76–81

    Article  PubMed  Google Scholar 

  • Jacobs JV, Horak FB (2007) Cortical control of postural responses. J Neural Transm 114(10):1339–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285(5436):2136–2139

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2004) Ergonomics and biology of spinal rotation. Ergonomics 47(4):370–415

    Article  PubMed  Google Scholar 

  • Kutch JJ, Yani MS, Asavasopon S, Kirages DJ, Rana M, Cosand L, Labus JS, Kilpatrick LA, Ashe-McNalley C, Farmer MA et al (2015) Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: a MAPP research network neuroimaging study. Neuroimage Clin 8:493–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Laakso I, Hirata A, Ugawa Y (2014) Efffects of coil orientation on the electric field induced by TMS over the hand motor area. Phys Med Biol 59(1):203–218

    Article  PubMed  Google Scholar 

  • Lee K-M, Chang K-H, Roh J-K (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9:117–123

    Article  CAS  PubMed  Google Scholar 

  • Lomond KV, Henry SM, Jacobs JV, Hitt JR, Horak FB, Cohen RG, Schwartz D, Dumas JA, Naylor MR, Watts R, DeSarno MJ (2013) Protocol to assess the neurophysiology associated with multi-segmental postural coordination. Physiol Meas 34(10):N97–N105

    Article  PubMed  Google Scholar 

  • Lotze M, Kaethner RJ, Erb M, Cohen LG, Grodd W, Topka H (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114:306–312

    Article  CAS  PubMed  Google Scholar 

  • McKay LC, Evans KC, Frackowiak RSJ, Corfield DR (2003) Neural correlates of voluntary breathing in humans. J Appl Physiol 95:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7:1010–1021

    CAS  PubMed  Google Scholar 

  • Moseley GL, Nicholas MK, Hodges PW (2004) Pain differs from non-painful attention-demanding or stressful tasks in its effect on postural control patterns of trunk muscles. Exp Brain Res 156(1):64–71

    Article  PubMed  Google Scholar 

  • Ng TH, Sowman PF, Brock J, Johnson BW (2011) Premovement brain activity in a bimanual load-lifting task. Exp Brain Res 208(2):189–201

    Article  PubMed  Google Scholar 

  • O’Connell NE, Maskill DW, Cossar J, Nowicky AV (2007) Mapping the cortical representation of the lumbar paravertebral muscles. Clin Neurophysiol 118(11):2451–2455

    Article  PubMed  Google Scholar 

  • Park C-H, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim Y-H (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357–1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Pijnenburg M, Brumagne S, Caeyenberghs K, Janssens L, Goossens N, Marinazzo D, Swinnen SP, Siugzdaite R (2015) Resting-state fucntional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the associatino with the sit-to-stand-to-sit task. Brain Connect 5(5):303–310

    Article  PubMed  Google Scholar 

  • Rana M, Yani MS, Asavasopon S, Fisher BE, Kutch JJ (2015) Brain connectivity asociated with muscle synergies in humans. J Neurosci 35(44):14708–14716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schabrun SM, Elgueta-Cancino EL, Hodges PW (2015) Smudging of the motor cortex is related to the severity of low back pain. Spine (Phila PA 1976). doi:10.1097/BRS.0000000000000938

  • Schmitz C, Jenmalm P, Westling G, Ehrsson H, Forssberg H (2005) Anticipatory postural adjustments in a bimanual load-lifting task: central aspects. Gait Posture 21:S50

    Article  Google Scholar 

  • Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control ang aging: links to age-related brain structural, functional and biochemical effects. Neurosci Biobehav Rev 34(5):721–744

    Article  CAS  PubMed  Google Scholar 

  • Sharshar T, Hopkinson NS, Jonville S, Prigent H, Carlier R, Dayer MJ, Swallow EB, Lofaso F, Moxham J, Polkey MI (2004) Demonstration of a second rapidly conducting cortico-diaphragmatic pathway in humans. J Physiol 560(3):897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silfies SP, Mehta R, Smith SS, Karduna AR (2009) Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain. Arch Phys Med Rehabil 90(7):1159–1169

    Article  PubMed  Google Scholar 

  • Solodkin A, Hlustik P, Chen E, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14(11):1246–1255

    Article  PubMed  Google Scholar 

  • Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34(3):1227–1237

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Strutton PH, Beith ID, Theodorou S, Catley M, MacGregor AH, Davey NJ (2004) Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man. Exp Brain Res 158:474–479

    Article  PubMed  Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19:251–268

    Article  CAS  PubMed  Google Scholar 

  • Tavor I, Jones OP, Mars R, Smith S, Behrens T, Jhahdi S (2016) Task-free MRI predicts individual differences in brain activity during task performance. Science 352:216–220

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Sammut R, Mastaglia FL (1998) Magnetic stimulation mapping of motor cortex: factors contributing to map area. Electroencephalogr Clin Neurophysiol 109:79–84

    Article  CAS  PubMed  Google Scholar 

  • Thordstein M, Saar K, Pegenius G, Elam M (2013) Individual effects of varying sitmulation intensity and response criteria on area of activation for different muscles in humans. A study using transcranial magnetic stimulation. Brain Stimul 6(1):49–53

    Article  PubMed  Google Scholar 

  • Tsao H, Galea MP, Hodges PW (2010) Driving plasticity in the motor cortex in recurrent low back pain. Eur J Pain 14:832–839

    Article  PubMed  Google Scholar 

  • Tsao H, Danneels LA, Hodges PW (2011) ISSLS prize winner: smudging the motor brain in young adults with recurrent low back pain. Spine ((Phila Pa 1976)) 36(21):1721–1727

    Article  Google Scholar 

  • Tunstill SA, Wynn-Davies AC, Nowicky AV, McGregor AH, Davey NJ (2001) Corticospinal facilitation studied during voluntary contraction of human abdominal muscles. Exp Physiol 86(1):131–136

    Article  CAS  PubMed  Google Scholar 

  • Vera-Garcia FJ, Moreside JM, McGill SM (2010) MVC techniques to normalize trunk muscle EMG in healthy women. J Electromyogr Kinesiol 20(1):10–16. doi:10.1016/j.jelekin.2009.03.010

    Article  PubMed  Google Scholar 

  • Viallet F, Massion J, Massarino RK, Khalil R (1992) Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 88(3):674–684

    Article  CAS  PubMed  Google Scholar 

  • Visser JE, Allum JHJ, Carpenter MG, Esselink RAJ, Limousin-Dowsey P, Honegger F, Borm GF, Bloem BR (2008) Effect of subthalamic nucleus deep brain stimulation on axial motor control and protective arm responses in Parkinson’s disease. Neuroscience 157(4):798–812

    Article  CAS  PubMed  Google Scholar 

  • White SG, McNair PJ (2002) Abdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activity. Clin Biomech 17(3):177–184

    Article  Google Scholar 

  • Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011) Functional connectivity of cortical motor areas in the resting state in Parkinson’s Disease. Hum Brain Mapp 32:1443–1457

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the California Physical Therapy Fund to JAS and BEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Kutch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.A., Albishi, A., Babikian, S. et al. The motor cortical representation of a muscle is not homogeneous in brain connectivity. Exp Brain Res 235, 2767–2776 (2017). https://doi.org/10.1007/s00221-017-5011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5011-7

Keywords

Navigation