Skip to main content
Log in

The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A rich pattern of connectivity is present in non-human primates between the dorsal premotor cortex (PMCd) and the motor cortex (M1). By analogy, similar connections are hypothesized in humans between the PMCd and the ipsilateral hand-related M1. However, the technical difficulty of applying transcranial magnetic stimulation (TMS) with a dual-coil paradigm to two cortical regions in such close spatial proximity renders their in vivo demonstration difficult. The present work aims at assessing in humans the existence of short-latency influences of the left PMCd on the ipsilateral corticofacial system by means of TMS. A dual-coil TMS paradigm was used with 16 participants. Test TMS pulses were applied to the left orofacial M1, and conditioning TMS pulses were applied to three distinct points of the ipsilateral PMCd along the caudal part of the superior frontal sulcus. The inter-stimulus interval (ISI) between condTMS and testTMS varied in 2-ms steps between 2 and 8 ms. Motor evoked potentials (MEPs) in the active orbicularis oris muscle were recorded. CondTMS exerted a robust effect on the corticofacial system only when applied to one specific portion of the PMCd and only at one specific ISI (6 ms). The effect consisted in a systematic suppression of facial MEPs compared to those obtained by testTMS alone. No other effect was found. We provide evidence for a specific short-latency inhibitory effect of the PMCd on the ipsilateral M1, likely witnessing direct corticocortical connectivity in humans. We also describe a novel paradigm to test ipsilateral PMCd–M1 in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiez C, Kostopoulos P, Champod AS, Petrides M (2006) Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 26:2724–2731

    Article  CAS  PubMed  Google Scholar 

  • Arai N, Lu MK, Ugawa Y, Ziemann U (2012) Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Exp Brain Res 220:79–87

    Article  PubMed  Google Scholar 

  • Baumer T, Schippling S, Kroeger J, Zittel S, Koch G, Thomalla G, Rothwell JC, Siebner HR, Orth M, Munchau A (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest–a bifocal TMS study. Clin Neurophysiol 120:1724–1731

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  • Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Cattaneo L, Pavesi G (2013) The facial motor system. Neurosci Biobehav Rev 38:135–159

    Article  PubMed  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Davare M, Lemon R, Olivier E (2008) Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol 586:2735–2742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057

    Article  PubMed Central  PubMed  Google Scholar 

  • Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    CAS  PubMed  Google Scholar 

  • Fulton J (1935) A note on the definition of the “motor” and “premotor” areas. Brain 58:311–316

    Article  Google Scholar 

  • Germann J, Robbins S, Halsband U, Petrides M (2005) Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334–356

    Article  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Springer, Berlin

    Book  Google Scholar 

  • Groppa S, Werner-Petroll N, Munchau A, Deuschl G, Ruschworth MFS, Siebner HR (2012) A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex. Neuroimage 62:500–509

    Article  PubMed  Google Scholar 

  • Hatanaka N, Nambu A, Yamashita A, Takada M, Tokuno H (2001) Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey. Neurosci Res 40:9–22

    Article  CAS  PubMed  Google Scholar 

  • He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    CAS  PubMed  Google Scholar 

  • He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306

    CAS  PubMed  Google Scholar 

  • Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99:14518–14523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459

    Article  CAS  PubMed  Google Scholar 

  • Kraskov A, Prabhu G, Quallo MM, Lemon RN, Brochier T (2011) Ventral premotor–motor cortex interactions in the macaque monkey during grasp: response of single neurons to intracortical microstimulation. J Neurosci 31:8812–8821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mars RB, Klein MC, Neubert FX, Olivier E, Buch ER, Boorman ED, Rushworth MF (2009) Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. J Neurosci 29:6926–6931

    Article  CAS  PubMed  Google Scholar 

  • Maule F, Barchiesi G, Brochier T, Cattaneo L (2015) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex 25:528–537

    Article  PubMed  Google Scholar 

  • Mochizuki H, Terao Y, Okabe S, Furubayashi T, Arai N, Iwata NK, Hanajima R, Kamakura K, Motoyoshi K, Ugawa Y (2004) Effects of motor cortical stimulation on the excitability of contralateral motor and sensory cortices. Exp Brain Res 158:519–526

    Article  PubMed  Google Scholar 

  • Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176–208

    Article  CAS  PubMed  Google Scholar 

  • Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177:176–182

    Article  CAS  PubMed  Google Scholar 

  • O’Shea J, Johansen-Berg H, Trief D, Gobel S, Rushworth MF (2007a) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490

    Article  PubMed  Google Scholar 

  • O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MF (2007b) Functional specificity of human premotor–motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed Central  PubMed  Google Scholar 

  • Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci 30:906–915

    Article  PubMed  Google Scholar 

  • Sato M, Buccino G, Gentilucci M, Cattaneo L (2010) On the tip of the tongue: modulation of the primary motor cortex during audiovisual speech perception. Speech Commun 5:2533–2541

    Google Scholar 

  • Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121(Pt 5):785–799

    Article  PubMed  Google Scholar 

  • Tokuno H, Tanji J (1993) Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J Comp Neurol 333:199–209

    Article  CAS  PubMed  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, MA

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeine Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie 25:277–462

    Google Scholar 

  • Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cogn Neurosci 16:978–987

    Article  PubMed  Google Scholar 

  • Watkins KE, Strafella AP, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994

    Article  CAS  PubMed  Google Scholar 

  • World Medical Association General Assembly (2008) Declaration of Helsinki. Ethical principles for medical research involving human subjects. World Med J 54:122–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cattaneo.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmigiani, S., Barchiesi, G. & Cattaneo, L. The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study. Exp Brain Res 233, 3253–3260 (2015). https://doi.org/10.1007/s00221-015-4393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4393-7

Keywords

Navigation