Skip to main content
Log in

Neuroelectric adaptations to cognitive processing in virtual environments: an exercise-related approach

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recently, virtual environments (VEs) are suggested to encourage users to exercise regularly. The benefits of chronic exercise on cognitive performance are well documented in non-VE neurophysiological and behavioural studies. Based on event-related potentials (ERP) such as the N200 and P300, cognitive processing may be interpreted on a neuronal level. However, exercise-related neuroelectric adaptation in VE remains widely unclear and thus characterizes the primary aim of the present study. Twenty-two healthy participants performed active (moderate cycling exercise) and passive (no exercise) sessions in three VEs (control, front, surround), each generating a different sense of presence. Within sessions, conditions were randomly assigned, each lasting 5 min and including a choice reaction-time task to assess cognitive performance. According to the international 10:20 system, EEG with real-time triggered stimulus onset was recorded, and peaks of N200 and P300 components (amplitude, latency) were exported for analysis. Heart rate was recorded, and sense of presence assessed prior to and following each session and condition. Results revealed an increase in ERP amplitudes (N200: p < 0.001; P300: p < 0.001) and latencies (N200: p < 0.001) that were most pronounced over fronto-central and occipital electrode sites relative to an increased sense of presence (p < 0.001); however, ERP were not modulated by exercise (each p > 0.05). Hypothesized to mirror cognitive processing, decreases of cognitive performance’s accuracy and reaction time failed significance. With respect to previous research, the present neuroelectric adaptation gives reason to believe in compensative neuronal resources that balance demanding cognitive processing in VE to avoid behavioural inefficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson-Hanley C, Arciero PJ, Brickman AM, Nimon JP, Okuma N, Westen SC, Merz ME, Pence BD, Woods JA, Kramer AF, Zimmerman EA (2012) Exergaming and older adult cognition: a cluster randomized clinical trial. Am J Prev Med 42:109–119. doi:10.1016/j.amepre.2011.10.016

    Article  PubMed  Google Scholar 

  • Batson CD, Brady RA, Peters BT, Ploutz-Snyder RJ, Mulavara AP, Cohen HS, Bloomberg JJ (2011) Gait training improves performance in healthy adults exposed to novel sensory discordant conditions. Exp Brain Res 209:515–524. doi:10.1007/s00221-011-2574-6

    Article  PubMed  Google Scholar 

  • Baumgartner T, Valko L, Esslen M, Jäncke L (2006) Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. Cyberpsychol Behav 9:30–45

    Article  PubMed  Google Scholar 

  • Bishop SJ, Duncan J, Lawrence AD (2004) State anxiety modulation of the amygdala response to unattended threatrelated stimuli. J Neurosci 24:10364–10648

    Article  CAS  PubMed  Google Scholar 

  • Brümmer V, Schneider S, Strüder HK, Askew CD (2011) Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience 181:150–162. doi:10.1016/j.neuroscience.2011.02.006

    Article  PubMed  Google Scholar 

  • Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61:1166–1170

    Article  PubMed  Google Scholar 

  • Collardeau M, Brisswalter J, Audiffren M (2001) Effects of a prolonged run on simple reaction time of well trained runners. Percept Mot Skills 93:679–689

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert BN, Schupp HT, Bradley MM, Birbaumer N, Lang PJ (2000) Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol Psychol 52:95–111

    Article  CAS  PubMed  Google Scholar 

  • Davranche K, Audiffren M (2004) Facilitating effects of exercise on information processing. J Sports Sci 22:419–428

    Article  PubMed  Google Scholar 

  • Debener S, Minow F, Emkes R, Gandras K, de Vos M (2012) How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49:1449–1453. doi:10.1111/j.1469-8986.2012.01471.x

    Article  Google Scholar 

  • Duncan CC, Barry RJ, Conolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, van Petten C (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908. doi:10.1016/j.clinph.2009.07.045

    Article  PubMed  Google Scholar 

  • Fent J, Weisz J (1999) Visual event-related potentials evoked by using a virtual reality display. Acta Physiol Hung 86:45–55

    CAS  PubMed  Google Scholar 

  • Folstein JR, van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152–170

    Article  PubMed Central  PubMed  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  CAS  PubMed  Google Scholar 

  • Herpers R, Hetmann F, Hau A, Heiden W (2005) The immersion square—a mobile platform for immersive visualizations. In: Hartmann U, Kohl-Bareis M, Hering P, Lonsdale G, Bongartz J, Buzug TM (eds) Aktuelle Methoden der Laser- und Medizinphysik. VDE, Remagen, pp 54–59

    Google Scholar 

  • Herpers R, Scherfgen D, Kutz M, Bongartz J, Hartmann U, Schulzyk O, Boronas S, Saitov T, Steiner H, Reinert D (2011) Multimedia sensory cue processing in the FIVIS simulation environment. In: Ghinea G, Andres F, Gulliver S (eds) Multiple sensorial media advances and applications: new developments in MulSeMedia. IGI Global, Hershey, pp 217–233

    Google Scholar 

  • Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF (2009) The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159:1044–1054. doi:10.1016/j.neuroscience.2009.01.057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffman HG, Richards T, Coda B, Richards A, Sharar SR (2003) The illusion of presence in immersive virtual reality during an fMRI brain scan. Cyberpsychol Behav 6:127–131

    Article  PubMed  Google Scholar 

  • Holden MK (2005) Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 8:187–219

    Article  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol Suppl 35:371–375

    Google Scholar 

  • Kamijo K, Takeda Y (2009) General physical activity levels influence positive and negative priming effects in young adults. Clin Neurophysiol 120:511–519. doi:10.1016/j.clinph.2008.11.022

    Article  PubMed  Google Scholar 

  • Kizony R, Levin MF, Hughey L, Perez C, Fung J (2010) Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Phys Ther 90:252–260. doi:10.2522/ptj.20090061

    Article  PubMed  Google Scholar 

  • Kramer AF, Erickson KI (2007) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11:342–348

    Article  PubMed  Google Scholar 

  • Kumar N, Sood S, Singh M, Beena S (2010) Effect of acute moderate exercise on cognitive event-related potentials N100, P200, N200, and interpeak latencies. Indian J Psychol Med 32:131–135. doi:10.4103/0253-7176.78511

    Article  PubMed Central  PubMed  Google Scholar 

  • Ladouceur CD, Dahl RE, Carter CS (2007) Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev Sci 10:874–891

    Article  PubMed  Google Scholar 

  • Lewis MD, Lamm C, Segalowitz SJ, Stieben J, Zelazo PD (2006) Neurophysiological correlates of emotion regulation in children and adolescents. J Cog Neurosci 18:430–443

    Article  Google Scholar 

  • Lewis MD, Todd RM, Honsberger MJM (2007) Event-related potential measures of emotion regulation in early childhood. NeuroReport 18:61–65

    Article  PubMed  Google Scholar 

  • Lieberman DA (2009) Designing serious games for learning and health in informal and formal settings. In: Ritterfeld U, Cody M, Vorderer P (eds) Serious games: mechanisms and effects. Routledge, New York, pp 117–130

    Google Scholar 

  • Öhman A, Flykt A, Esteves F (2001) Emotion drives attention: detecting the snake in the grass. J Exp Psychol Gen 130:466–478

    Article  PubMed  Google Scholar 

  • Oloffson JK, Nordin S, Sequeira H, Polich J (2008) Affective picture processing: an integrative review of ERP findings. Biol Psychol 77:247–265. doi:10.1016/j.biopsycho.2007.11.006

    Article  Google Scholar 

  • Paas FG, Adam JJ (1991) Human information processing during physical exercise. Ergonomics 34:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Pelosi L, Holly M, Slade T, Hayward M, Barrett G, Blumhardt LD (1992) Event-related potential (ERP) correlates of performance of intelligence tests. Electroencephalogr Clin Neurophysiol 84:515–520

    Article  CAS  PubMed  Google Scholar 

  • Pichierri G, Wolf P, Murer K, de Bruin ED (2011) Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC Geriatr 11:29. doi:10.1186/1471-2318-11-29

    Article  PubMed Central  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed Central  PubMed  Google Scholar 

  • Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146

    Article  CAS  PubMed  Google Scholar 

  • Pontifex MB, Hillman CH (2007) Neuroelectric and behavioural indices of interference control during acute cycling. Clin Neurophysiol 118:570–580

    Article  PubMed  Google Scholar 

  • Ridderinkhof RK, de Vlugt Y, Bramlage A, Spaan M, Elton M, Snel J, Band GP (2002) Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science 298:2209–2211

    Article  CAS  PubMed  Google Scholar 

  • Romano DM, Brna P (2001) Presence and reflection in training: support for learning to improve quality decision-making skills under time limitations. Cyberpsychol Behav 4:265–277

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Vogt T, Frysch J, Guardiera P, Strüder HK (2009) School sport—a neurophysiological approach. Neurosci Lett 467:131–134. doi:10.1016/j.neulet.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Brümmer V, Carnahan H, Kleinert J, Piacentini MF, Meeusen R, Strüder HK (2010) Exercise as a countermeasure to psycho-physiological deconditioning during long-term confinement. Behav Brain Res 211:208–214. doi:10.1016/j.bbr.2010.03.034

    Article  PubMed  Google Scholar 

  • Schupp HT, Junghöfer M, Weike AI, Hamm AO (2004) The selective processing of briefly presented affective pictures: an ERP analysis. Psychophysiology 241:441–449

    Article  Google Scholar 

  • Themanson JR, Hillman CH (2006) Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioural measures of action monitoring. Neuroscience 141(2):757–767

    Article  CAS  PubMed  Google Scholar 

  • Vogt T, Schneider S, Brümmer V, Strüder HK (2010) Frontal EEG asymmetry: the effects of sustained walking in the elderly. Neurosci Lett 485:134–137. doi:10.1016/j.neulet.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  • Vogt T, Schneider S, Abeln V, Anneken V, Strüder HK (2012) Exercise, mood and cognitive performance in intellectual disability—a neurophysiological approach. Behav Brain Res 226:473–480. doi:10.1016/j.bbr.2011.10.015

    Article  PubMed  Google Scholar 

  • Vogt T, Schneider S, Anneken V, Strüder HK (2013) Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities. Res Dev Disabil 34:2708–2716. doi:10.1016/j.ridd.2013.05.037

    Article  PubMed  Google Scholar 

  • Vogt T, Abeln V, Strüder HK, Schneider S (2014) Artificial gravity exposure impairs exercise-related neurophysiological benefits. Physiol Behav 123:156–161

    Article  CAS  PubMed  Google Scholar 

  • Vuilleumier P, Armony JL, Driver J, Dolan RJ (2001) Effects of attention and emotion on face processing in the human brain an event-related fMRI study. Neuron 30:829–841

    Article  CAS  PubMed  Google Scholar 

  • Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a Presence Questionnaire. Presence 7:225–240. doi:10.1162/105474698565686

    Article  Google Scholar 

  • Yagi Y, Coburn KL, Estes KM, Arruda JE (1999) Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. Eur J Appl Physiol 80:402–408

    Article  CAS  Google Scholar 

  • Zanto TP, Gazzaley A (2009) Neural suppression of irrelevant information underlies optimal working memory performance. J Neurosci 29:3059–3066. doi:10.1523/JNEUROSCI.4621-08.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was made possible by research grants from the German Sport University Cologne (HIFF920080) and the Deutsche Gesetzliche Unfallversicherung (FP307). We would like to express our gratitude to all participants who spent their valuable time virtualized in support of this study, to an unknown reviewer for valuable comments to a previous version of this manuscript and further to Timur Saitov for the technical support as well as Sandra Felsner and Amrei Jacubowski for their help during data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Vogt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, T., Herpers, R., Scherfgen, D. et al. Neuroelectric adaptations to cognitive processing in virtual environments: an exercise-related approach. Exp Brain Res 233, 1321–1329 (2015). https://doi.org/10.1007/s00221-015-4208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4208-x

Keywords

Navigation