Skip to main content

Advertisement

Log in

How does high-frequency sound or vibration activate vestibular receptors?

  • Mini-Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACS:

Air-conducted sound

BCV:

Bone-conducted vibration

EMG:

Electromyogram

Fz:

The location on the forehead in the midline at the hairline

Fz BCV:

Bone-conducted vibration delivered to Fz

HCB:

Hair cell bundle

cVEMP:

Cervical vestibular-evoked myogenic potential

oVEMP:

Ocular vestibular-evoked myogenic potential

n10:

The initial negative potential of the oVEMP response at a latency of around 10 ms

References

  • Burgess AM, Mezey LE, Manzari L, MacDougall HG, McGarvie LA, Curthoys IS (2013) Effect of stimulus rise-time on the ocular vestibular-evoked myogenic potential to bone-conducted vibration. Ear Hear 34:799–805. doi:10.1097/AUD.0b013e318294e3d2

    Article  PubMed  Google Scholar 

  • Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25:345–352

    Article  PubMed  Google Scholar 

  • Chien W, Ravicz ME, Rosowski JJ, Merchant SN (2007) Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal. Otol Neurotol 28:250–257. doi:10.1097/01.mao.0000244370.47320.9a

    Article  PubMed Central  PubMed  Google Scholar 

  • Curthoys IS (2004) Peripheral vestibular responses to sound. Neuroembryol Aging 3:207–214

    Article  Google Scholar 

  • Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144. doi:10.1016/j.clinph.2009.09.027

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V (2011) Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 210:347–352. doi:10.1007/s00221-010-2499-5

    Article  PubMed  Google Scholar 

  • Curthoys IS, Kim J, McPhedran SK, Camp AJ (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175:256–267. doi:10.1007/s00221-006-0544-1

    Article  PubMed  Google Scholar 

  • Curthoys IS, Uzun-Coruhlu H, Wong CC, Jones AS, Bradshaw AP (2009) The configuration and attachment of the utricular and saccular maculae to the temporal bone. New evidence from microtomography-CT studies of the membranous labyrinth. Ann NY Acad Sci 1164:13–18. doi:10.1111/j.1749-6632.2008.03729.x

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Burgess AM, Cornell ED, Mezey LE, Macdougall HG, Manzari L, McGarvie LA (2011) The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Ann NY Acad Sci 1233:231–241. doi:10.1111/j.1749-6632.2011.06147.x

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89:16–21. doi:10.1016/j.brainresbull.2012.07.007

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Pogson J, Sokolic L (2013) Responses of guinea pig primary vestibular afferents to low frequency (50–100 Hz) bone conducted vibration (BCV)—the neural basis of vibration induced nystagmus. Program No. 574.06, 2012 Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience, 2012. Online

  • Curthoys I, Burgess A, Mezey L, MacDougall H, McGarvie L (2014a) The effect of stimulus rise-time on the ocular vestibular-evoked myogenic potential (oVEMP) to bone-conducted vibration (BCV). J Vestib Res 24:69–70

    Google Scholar 

  • Curthoys I, Vulovic V, Sokolic L, Goonetilleke S, Burgess A, Grant W (2014b) The frequency responses of irregular primary utricular afferent neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). J Vestib Res 24:70–71

    Google Scholar 

  • Curthoys IS, Burgess AM, McGarvie LA (2014c) What Is the adequate stimulus for the oVEMP n10 to bone-conducted vibration? a reply to the letter by todd and colebatch (2014). Ear Hear 35:487–489

    Article  PubMed  Google Scholar 

  • Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers II. High-frequency mechanical stimulation. J Neurophysiol 62:1102–1112

    CAS  PubMed  Google Scholar 

  • Dunlap MD, Grant JW (2014) Experimental measurement of utricle system dynamic response to inertial stimulus. J Assoc Res Otolaryngol 15:511–528. doi:10.1007/s10162-014-0456-x

    Article  CAS  PubMed  Google Scholar 

  • Dunlap MD, Spoon CE, Grant JW (2012) Experimental measurement of utricle dynamic response. J Vestib Res 22:57–68. doi:10.3233/ves-2011-0431

    CAS  PubMed  Google Scholar 

  • Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 34:501–534. doi:10.1146/annurev-neuro-061010-113710

    Article  CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM (1976c) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780

    CAS  PubMed  Google Scholar 

  • Goldberg JM (1991) The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1:229–235

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990a) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990b) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804

    CAS  PubMed  Google Scholar 

  • Hara M, Kimura RS (1993) Morphology of the membrana limitans. Ann Otol Rhinol Laryngol 102:625–630

    Article  CAS  PubMed  Google Scholar 

  • Hecker DJ, Lohscheller J, Schorn B, Koch KP, Schick B, Dlugaiczyk J (2014) Electromotive triggering and single sweep analysis of vestibular evoked myogenic potentials (VEMPs). IEEE Trans Neural Syst Rehabil Eng 22:158–167

    Article  Google Scholar 

  • Iwasaki S, McGarvie LA, Halmagyi GM, Burgess AM, Kim J, Colebatch JG, Curthoys IS (2007) Head taps evoke a crossed vestibulo-ocular reflex. Neurology 68:1227–1229. doi:10.1212/01.wnl.0000259064.80564.21

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, Curthoys IS (2008a) Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 119:2135–2147. doi:10.1016/j.clinph.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, Curthoys IS (2008b) Ocular vestibular evoked myogenic potentials in response to bone-conducted vibration of the midline forehead at Fz. A new indicator of unilateral otolithic loss. Audiol Neurotol 13:396–404. doi:10.1159/000148203

    Article  CAS  Google Scholar 

  • Li GL, Cho S, von Gersdorff H (2014) Phase-locking precision is enhanced by multiquantal release at an auditory hair cell ribbon synapse. Neuron 83:1404–1417. doi:10.1016/j.neuron.2014.08.027

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu Z, Buchser WJ (2004) Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A 190:923–938. doi:10.1007/s00359-004-0550-3

    CAS  Google Scholar 

  • Lysakowski A, Minor LB, Fernandez C, Goldberg JM (1995) Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel-monkey. J Neurophysiol 73:1270–1281

    CAS  PubMed  Google Scholar 

  • Manzari L, Burgess AM, Curthoys IS (2011) Effect of bone conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL)—evidence for a new indicator of unilateral otolithic function. Eur J Neurol 18(Suppl 2):152

    Google Scholar 

  • Manzari L, Burgess AM, McGarvie LA, Curthoys IS (2013) An indicator of probable semicircular canal dehiscence: ocular vestibular evoked myogenic potentials to high frequencies. Otolaryngol Head Neck Surg 149:142–145. doi:10.1177/0194599813489494

    Article  PubMed  Google Scholar 

  • McCue MP, Guinan JJ Jr (1994) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070

    CAS  PubMed  Google Scholar 

  • McCue MP, Guinan JJ Jr (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572

    CAS  PubMed  Google Scholar 

  • McCue MP, Guinan JJ Jr (1997) Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 18:355–360

    CAS  PubMed  Google Scholar 

  • Meyer M, Fay RR, Popper AN (2010) Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens. J Exp Biol 213:1567–1578. doi:10.1242/jeb.031757

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikaelian D (1964) Vestibular response to sound: single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df). Acta Otolaryngol 58:409–422

    Article  CAS  PubMed  Google Scholar 

  • Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72

    Article  CAS  PubMed  Google Scholar 

  • Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178

    Article  CAS  PubMed  Google Scholar 

  • Nageris BI, Attias J, Shemesh R, Hod R, Preis M (2012) Effect of cochlear window fixation on air- and bone-conduction thresholds. Otol Neurotol 33:1679–1684. doi:10.1097/MAO.0b013e31826dbabb

    Article  PubMed  Google Scholar 

  • Nam JH, Cotton JR, Grant JW (2005) Effect of fluid forcing on vestibular hair bundles. J Vestib Res 15:263–278

    PubMed  Google Scholar 

  • Rabbitt RD, Boyle R, Highstein SM (1995) Mechanical indentation of the vestibular labyrinth and its relationship to head rotation in the toadfish, Opsanus tau. J Neurophysiol 73:2237–2260

    CAS  PubMed  Google Scholar 

  • Rabbitt RD, Damiano ER, Grant JW (2004) Biomechanics of the semicircular canals and otolith organs. In: Highstein SM, Fay RR, Popper AN (eds) The vestibular system. Springer, New york, pp 153–201

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793

    CAS  PubMed  Google Scholar 

  • Rosengren SM, McAngus Todd NP, Colebatch JG (2005) Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116:1938–1948. doi:10.1016/j.clinph.2005.03.019

    Article  CAS  PubMed  Google Scholar 

  • Rosowski JJ, Songer JE, Nakajima HH, Brinsko KM, Merchant SN (2004) Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms. Otol Neurotol 25:323–332. doi:10.1097/00129492-200405000-00021

    Article  PubMed  Google Scholar 

  • Rowe MH, Peterson EH (2006) Autocorrelation analysis of hair bundle structure in the utricle. J Neurophysiol 96:2653–2669. doi:10.1152/jn.00565.2006

    Article  CAS  PubMed  Google Scholar 

  • Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33:3706–3724. doi:10.1523/JNEUROSCI.4067-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62. doi:10.1016/j.heares.2005.07.003

    Article  PubMed Central  PubMed  Google Scholar 

  • Songer JE, Rosowski JJ (2006) The effect of superior-canal opening on middle-ear input admittance and air-conducted stapes velocity in chinchilla. J Acoust Soc Am 120:258–269. doi:10.1121/1.2204356

    Article  PubMed Central  PubMed  Google Scholar 

  • Spoon C, Grant W (2011) Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler–Bernoulli and Timoshenko beam analysis. J Exp Biol 214:862–870. doi:10.1242/jeb.051151

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki JI, Tokumasu K, Goto K (1969) Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 68:350–362

    Article  CAS  PubMed  Google Scholar 

  • Todd NPM, Rosengren SM, Aw ST, Colebatch JG (2007) Ocular vestibular evoked myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clin Neurophysiol 118:381–390. doi:10.1016/j.clinph.2006.09.025

    Article  PubMed  Google Scholar 

  • Uzun-Coruhlu H, Curthoys IS, Jones AS (2007) Attachment of the utricular and saccular maculae to the temporal bone. Hear Res 233:77–85. doi:10.1016/j.heares.2007.07.008

    Article  PubMed  Google Scholar 

  • Weber KP, Rosengren SM, Michels R, Sturm V, Straumann D, Landau K (2012) Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex. J Physiol (Lond) 590:3091–3101. doi:10.1113/jphysiol.2011.226225

    Article  CAS  Google Scholar 

  • Wit HP, Bleeker JD, Mulder HH (1984) Responses of pigeon vestibular nerve-fibers to sound and vibration with audiofrequencies. J Acoust Soc Am 75:202–208. doi:10.1121/1.390396

    Article  CAS  PubMed  Google Scholar 

  • Xue JB, Peterson EH (2006) Hair bundle heights in the utricle: differences between macular locations and hair cell types. J Neurophysiol 95:171–186. doi:10.1152/jn.00800.2005

    Article  PubMed  Google Scholar 

  • Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Zhu H, Tang X, Wei W, Mustain W, Xu Y, Zhou W (2011) Click-evoked responses in vestibular afferents in rats. J Neurophysiol 106:754–763. doi:10.1152/jn.00003.2011

    Article  PubMed  Google Scholar 

  • Zhu H, Tang X, Wei W, Maklad A, Mustain W, Rabbitt R, Highstein S, Allison J, Zhou W (2014) Input-output functions of vestibular afferent responses to air-conducted clicks in rats. J Assoc Res Otolaryngol 15:73–86

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of NH&MRC of Australia (Grants 632746, 1046826) and the Garnett Passe and Rodney Williams Memorial Foundation. We thank Ann Burgess for her excellent help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Curthoys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curthoys, I.S., Grant, J.W. How does high-frequency sound or vibration activate vestibular receptors?. Exp Brain Res 233, 691–699 (2015). https://doi.org/10.1007/s00221-014-4192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4192-6

Keywords

Navigation