Skip to main content
Log in

Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of “modes,” hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamovich SV, Archambault PS, Ghafouri M, Levin MF, Poizner H, Feldman AG (2001) Hand trajectory invariance in reaching movements involving the trunk. Exp Brain Res 138:288–303

    Article  CAS  PubMed  Google Scholar 

  • Ambike SS, Paclet F, Latash ML, Zatsiorsky VM (2013) Grip-force modulation in multi-finger prehension during wrist flexion and extension. Exp Brain Res 227:509–522

    Article  PubMed  Google Scholar 

  • Baweja HS, Patel BK, Martinkewiz JD, Vu J, Christou EA (2009) Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res 197:35–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bobath B (1978) Adult hemiplegia: evaluation and treatment. William Heinemann, London

    Google Scholar 

  • Brand P, Hollister A (1999) Clinical mechanics of the hand, 3rd edn. Mosby Year Book, St. Louis

    Google Scholar 

  • Chao E, An K, Cooney W, Linscheid R (1989) Biomechanics of the hand, 1st edn. World Scientific, Singapore

    Book  Google Scholar 

  • Côté JN, Mathieu PA, Levin MF, Feldman AG (2002) Movement reorganization to compensate for fatigue during sawing. Exp Brain Res 146:394–398

    Article  PubMed  Google Scholar 

  • Côté JN, Feldman AG, Mathieu PA, Levin MF (2008) Effects of fatigue on intermuscular coordination during repetitive hammering. Mot Control 12:79–92

    Google Scholar 

  • Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98

    Article  PubMed  Google Scholar 

  • d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Nat Acad Sci USA 102:3076–3081

    Article  PubMed  Google Scholar 

  • Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510

    Article  PubMed  Google Scholar 

  • Feldman AG (2009) Origin and advances of the equilibrium-point hypothesis. Adv Exp Med Biol 629:637–643

    Article  PubMed  Google Scholar 

  • Feldman AG (2011) Space and time in the context of equilibrium-point theory. Wiley Interdisc Rev Cogn Sci 2:287–304

    Article  Google Scholar 

  • Flanagan JR, Tresilian JR (1994) Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform 20:944–957

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  CAS  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  CAS  PubMed  Google Scholar 

  • Fridén J, Lieber RL (2002) Tendon transfer surgery: clinical implications of experimental studies. Clin Orthop Relat Res (403 Suppl): S163–S170

  • Gates DH, Dingwell JB (2008) The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res 187:573–585

    Article  PubMed Central  PubMed  Google Scholar 

  • Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313

    CAS  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26:590–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Grinyagin IV, Biryukova EV, Maier MA (2005) Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 94:2284–2294

    Article  CAS  PubMed  Google Scholar 

  • Holmberg H, Schouenborg J, Yu YB, Weng HR (1997) Developmental adaptation of rat nociceptive withdrawal reflexes after neonatal tendon transfer. J Neurosci 17:2071–2078

    CAS  PubMed  Google Scholar 

  • Huffenus AF, Amarantini D, Forestier N (2006) Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Exp Brain Res 170:438–447

    Article  PubMed  Google Scholar 

  • Illert M, Trauner M, Weller E, Wiedemann E (1986) Forearm muscles of man can reverse their function after tendon transfers: an electromyographic study. Neurosci Lett 67:129–134

    Article  CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  CAS  PubMed  Google Scholar 

  • Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479:487–497

    PubMed  Google Scholar 

  • Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2008) Finger interdependence: linking the kinetic and kinematic variables. Hum Move Sci 27:408–422

    Article  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Latash ML (2008) Synergy. Oxford University Press, New York

    Book  Google Scholar 

  • Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322

    Google Scholar 

  • Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217:1–5

    Article  PubMed Central  PubMed  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Li S, Danion F, Zatsiorsky VM (2002a) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Res 924:198–208

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30:26–31

    Article  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Li Z-M, Latash ML, Newell KM, Zatsiorsky VM (1998) Motor redundancy during maximal voluntary contraction in four-finger tasks. Exp Brain Res 122:71–78

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR (2002) Musculoskeletal mechanics: a foundation of motor physiology. Adv Exp Med Biol 508:473–479

    Article  PubMed  Google Scholar 

  • Park J, Zatsiorsky VM, Latash ML (2010) Optimality vs. variability: an example of multi-finger redundant tasks. Exp Brain Res 207:119–132

    Article  PubMed Central  PubMed  Google Scholar 

  • Platzer W (2004) Color atlas of human anatomy, locomotor system, 5th edn. Thieme, New York

    Google Scholar 

  • Prilutsky B, Zatsiorsky V (2002) Optimization-based models of muscle coordination. Exerc Sports Sci Rev 30:1–13

    Article  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2008) Mirrors in the brain: how our minds share actions, emotions. Oxford University Press, USA

    Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. Exp Brain Res 71:491–507

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2004) Cortical mechanisms subserving object grasping, action understanding, and imitation. In: Gazzaniga MS (ed) The new cognitive neurosciences, 3rd edn. MIT Press, Cambridge, pp 427–440

    Google Scholar 

  • Santello M (2002) Kinematic synergies for the control of hand shape. Arch Ital Biol 140:221–228

    CAS  PubMed  Google Scholar 

  • Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96:2293–2300

    Article  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Shapkova EYu, Shapkova AL, Goodman SR, Zatsiorsky VM, Latash ML (2008) Do synergies decrease force variability? A study of single-finger and multi-finger force production. Exp Brain Res 188:411–425

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML (2003) Effects of age and gender on finger coordination in maximal contractions and submaximal force matching tasks. J Appl Physiol 94:259–270

    PubMed  Google Scholar 

  • Singh T, Latash ML (2011) Effects of muscle fatigue on multi-muscle synergies. Exp Brain Res 214:335–350

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh T, SKM V, Zatsiorsky VM, Latash ML (2010) Fatigue and motor redundancy: adaptive increase in force variance in multi-finger tasks. J Neurophysiol 103:2990–3000

    Article  PubMed  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–1718

    CAS  PubMed  Google Scholar 

  • Slobounov S, Ray W, Cao C, Chiang H (2007) Modulation of cortical activity as a result of task-specific practice. Neurosci Lett 421:126–131

    Article  CAS  PubMed  Google Scholar 

  • Tessitore G, Sinigaglia C, Prevete R (2013) Hierarchical and multiple hand action representation using temporal postural synergies. Exp Brain Res 225:11–36

    Article  CAS  PubMed  Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613

    Article  PubMed  Google Scholar 

  • Torres-Oviedo G, Ting LH (2007) Muscle synergies characterizing human postural responses. J Neurophysiol 98:2144–2156

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285

    Article  PubMed  Google Scholar 

  • van Duinen H, Gandevia SC (2011) Constraints for control of the human hand. J Physiol 589:5583–5593

    PubMed  Google Scholar 

  • Vinjamuri R, Sun M, Chang CC, Lee HN, Sclabassi RJ, Mao ZH (2010) Temporal postural synergies of the hand in rapid grasping tasks. IEEE Trans Inf Technol Biomed 14:986–994

    Article  PubMed  Google Scholar 

  • Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2012) Practicing elements vs. practicing coordination: changes in the structure of variance. J Mot Behav 44:471–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2013) Improving finger coordination in young and elderly persons. Exp Brain Res 226:273–283

    Article  PubMed  Google Scholar 

  • Xu Y, Terekhov AV, Latash ML, Zatsiorsky VM (2012) Forces and moments generated by the human arm: variability and control. Exp Brain Res 223:159–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zatsiorsky VM (2002) Kinetics of human motion. Human Kinetics, Champaign, IL

    Google Scholar 

  • Zatsiorsky VM, Latash ML (2008) Multi-finger prehension: an overview. J Mot Behav 40:446–476

    Article  PubMed Central  PubMed  Google Scholar 

  • Zatsiorsky VM, Li Z-M, Latash ML (1998) Coordinated force production in multi-finger tasks. Finger interaction and neural network modeling. Biol Cybern 79:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zatsiorsky VM, Li Z-M, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very much grateful to Prof. Arkady Tempelman (Department of Mathematics and Department of Statistics, The Pennsylvania State University) for his advice on the proof presented in the “Appendix.” The study was in part supported by NIH grants NS-035032 and AR-048563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Appendix

Appendix

The following is a proof for the equality of variance in the orthogonal subspace defined in the Force and Mode spaces. We denote vector quantities by a lower-case, bold font letters (\(\vec{\varvec{f}}\)). For unit vectors, the overhead bar is replaced with a hat (\(\hat{\varvec{e}}\)). The notation \(\vec{\varvec{a}} \cdot \vec{\varvec{b}}\) denotes the dot product of vectors \(\vec{\varvec{a}}\) and \(\vec{\varvec{b}}\), and the symbol d(.) indicates the derivative.

Consider a system of n elemental variables \(\varvec{f}_{\varvec{i}}\) constrained by a single, linear equation: \(f_{tot} = \sum\nolimits_{i = 1}^{i = n} {f_{i} }\), and an enslaving matrix \(E \in n \times n\) such that all of the n columns add to 1. The matrix E has the form of a left stochastic matrix or a Markov matrix.

The mode is defined as:

$$\bar{\varvec{m}} := E^{ - 1} {\varvec{f}}$$

where \(\bar{\varvec{m}}\) is a n-dimensional column vector. Now assuming that the enslaving matrix is constant,

$${\text{d}}\bar{\varvec{m}} = E^{ - 1} {\text{d}}\varvec{f}, \Rightarrow {\text{d}}\varvec{f} = E\text{d}\bar{\varvec{m}}$$
$${\text{Therefore}}, {\text{d}}f_{tot} = J{\text{d}}\vec{\varvec{f}} = JE{\text{d}}\bar{\varvec{m}} = J{\text{d}}\bar{\varvec{m}},$$
(13)

where J is the task Jacobian given by \(\left[ {\begin{array}{*{20}c} 1 & 1 & \cdots & 1 \\ \end{array} } \right]\). Equation 13 shows that the task Jacobian is identical in the Force and Mode spaces. Therefore, the orthogonal subspace of the task Jacobian in the two spaces is:

$$\hat{\varvec{o}} = \frac{1}{\sqrt n } \left[ {\begin{array}{*{20}c} 1 \\ {\begin{array}{*{20}c} 1 \\ \vdots \\ \end{array} } \\ 1 \\ \end{array} } \right]$$

It is evident that the vector \(\bar{\varvec{v}}: = \left[ {\begin{array}{*{20}c} 1 & 1 & \cdots & 1 \\ \end{array} } \right]\) ∈ 1 × n is a left eigenvector of E, and \(\bar{\varvec{v}}^{T}\) is a right eigenvector of E T, each with the eigenvalue 1 (i.e., \(\bar{\varvec{v}}E = \bar{\varvec{v}}\) and \(E^{T} \bar{\varvec{v}}^{T} = \bar{\varvec{v}}^{T}\)). Also, \(\bar{\varvec{v}}^{T} = \sqrt n \hat{\varvec{o}}\), and therefore,

$$E^{T} \hat{\varvec{o}} = \hat{\varvec{o}}$$

Here we show that

$$\bar{\varvec{f}} \cdot \hat{\varvec{o}} = \left( {E\bar{\varvec{m}}} \right) \cdot \hat{\varvec{o}} = \bar{\varvec{m}} \cdot \hat{\varvec{o}}$$

It is well known that for two arbitrary vectors \(\bar{\varvec{p}},\bar{\varvec{q}} \in {\mathbb{R}}^{n}\), and a matrix \(A \in n \times n\),

$$A\bar{\varvec{p}} \cdot \bar{\varvec{q}} = \bar{\varvec{p}} \cdot A^{T} \bar{\varvec{q}}$$

Therefore, for any vector \(\bar{\varvec{m}}\) in the Mode space,

$$\begin{aligned} \left( {E\bar{\varvec{m}}} \right) \cdot \hat{\varvec{o}}& = \bar{\varvec{m}}\left( {E^{T} \hat{\varvec{o}}} \right)\\ \left({E\bar{\varvec{m}}} \right) \cdot \hat{\varvec{o}}&= \bar{\varvec{m}} \cdot \hat{\varvec{o}}\\ \Rightarrow\bar{\varvec{f}} \cdot \hat{\varvec{o}}& = \bar{\varvec{m}} \cdot \hat{\varvec{o}} = \frac{1}{\sqrt n } \mathop\sum \limits_{i = 1}^{i = n} f_{i}\end{aligned}$$
(14)

Equation (14) demonstrates that the transformation of \(\vec{\varvec{f}}\) into \({\bar{\varvec{m}}}\) leaves the projection of \(\vec{\varvec{f}}\) onto \({\hat{\varvec{o}}}\) unaltered. It follows that the variances in the orthogonal subspaces of the Mode and Force spaces for such systems are equal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paclet, F., Ambike, S., Zatsiorsky, V.M. et al. Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks. Exp Brain Res 232, 775–787 (2014). https://doi.org/10.1007/s00221-013-3787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3787-7

Keywords

Navigation