Skip to main content
Log in

Exploiting object constancy: effects of active exploration and shape morphing on similarity judgments of novel objects

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Humans are experts at shape processing. This expertise has been learned and fine tuned by actively manipulating and perceiving thousands of objects during development. Therefore, shape processing possesses an active component and a perceptual component. Here, we investigate both components in six experiments in which participants view and/or interact with novel, parametrically defined 3D objects using a touch-screen interface. For probing shape processing, we use a similarity rating task. In Experiments 1–3, we show that active manipulation leads to a better perceptual reconstruction of the physical parameter space than judging rotating objects, or passively viewing someone else’s exploration pattern. In Experiment 4, we exploit object constancy—the fact that the visual system assumes that objects do not change their identity during manipulation. We show that slow morphing of an object during active manipulation systematically biases similarity ratings—despite the participants being unaware of the morphing. Experiments 5 and 6 investigate the time course of integrating shape information by restricting the morphing to the first and second half of the trial only. Interestingly, the results indicate that participants do not seem to integrate shape information beyond 5 s of exploration time. Finally, Experiment 7 uses a secondary task that suggests that the previous results are not simply due to lack of attention during the later parts of the trial. In summary, our results demonstrate the advantage of active manipulation for shape processing and indicate a continued, perceptual integration of complex shape information within a time window of a few seconds during object interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115

    Article  PubMed  CAS  Google Scholar 

  • Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer, Berlin

  • Brady TF, Konkle T, Alvarez G (2011) A review of visual memory capacity: beyond individual items and toward structured representations. J Vis 11(5):4

    Article  PubMed  Google Scholar 

  • Bülthoff HH, Edelman S (1992) Psychophysical support for a 2-D view interpolation theory of object recognition. Proc Natl Acad Sci USA 89:60–64

    Article  PubMed  Google Scholar 

  • Chuang LL, Vuong QC, Bülthoff HH (2012) Learned non-rigid object motion is a view-invariant cue to recognizing novel objects. Frontiers Comput Neurosci 6(26):1–8

    Google Scholar 

  • Cooke T, Jäkel F, Wallraven C, Bülthoff HH (2007) Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45:484–495

    Article  PubMed  Google Scholar 

  • Craddock M, Martinovic J, Lawson R (2011) An advantage for active versus passive aperture-viewing in visual object recognition. Perception 40:1154–1163

    Article  PubMed  Google Scholar 

  • Cutzu F, Edelman S (1998) Representation of object similarity in human vision: psychophysics and a computational model. Vis Res 38:2227–2257

    Article  Google Scholar 

  • Dopjans L, Bülthoff HH, Wallraven C (2012) Serial exploration of faces: comparing vision and touch. J Vis 12:1–14

    Google Scholar 

  • Edelman S (1999) Representation and recognition in vision. MIT Press, Cambridge

  • Edelman S, Shahbazi R (2012) Renewing the respect for similarity. Frontiers Comput Neurosci 6:45

    Google Scholar 

  • Foster DH, Gilson SJ (2002) Recognizing novel three–dimensional objects by summing signals from parts and views. Proceedings of the Royal Society of London. Ser B Biol Sci 269:1939–1947

    Article  Google Scholar 

  • Gaißert N, Wallraven C, Bülthoff HH (2010) Visual and haptic perceptual spaces show high similarity in humans. J Vis 10(11:2):1–20

    Google Scholar 

  • Gaißert N, Bülthoff HH, Wallraven C (2011) Similarity and categorization: from vision to touch. Acta Psychol 138:219–230

    Google Scholar 

  • Goodale MA (2011) Transforming vision into action. Vision Res 51:1567–1587

    Article  PubMed  Google Scholar 

  • Grimes J (1996) On the failure to detect changes in scenes across saccades. In: Akins K (ed) Perception (Vancouver studies in cognitive science). Oxford University Press, New York, pp 89–110

  • Harman KL, Humphrey GK, Goodale MA (1999) Active manual control of object views facilitates visual recognition. Curr Biol 9:1315–1318

    Article  PubMed  CAS  Google Scholar 

  • James KH, Humphrey GK, Goodale MA (2001) Manipulating and recognizing virtual objects: where the action is. Can J Exp Psychol 55:111–120

    Article  PubMed  CAS  Google Scholar 

  • James KH, Humphrey GK, Vilis T, Corrie B, Baddour R, Goodale MA (2002) “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment. Behav Res Methods Instrum Comput 34:383–390

    Article  PubMed  CAS  Google Scholar 

  • Lawson R, Bülthoff HH (2006) Comparing view sensitivity in shape discrimination with shape sensitivity in view discrimination. Percept Psychophys 68:655–673

    Article  PubMed  Google Scholar 

  • Lawson R, Bülthoff HH (2008) Using morphs of familiar objects to examine how shape discriminability influences view sensitivity. Percept Psychophys 70(5):853–877

    Article  PubMed  Google Scholar 

  • Meijer F, Van der Lubbe RH (2011) Active exploration improves perceptual sensitivity for virtual 3D objects in visual recognition tasks. Vis Res 51:2431–2439

    Article  PubMed  Google Scholar 

  • Myers L, Sirois MJ (2004) Spearman correlation coefficients, differences between. In: Kotz S, Read CB, Balakrishnan N, Vidakovic B (eds) Encyclopedia of statistical sciences. Wiley, Berlin

  • Pereira AF, James KH, Jones SS, Smith LB (2010) Early biases and developmental changes in self-generated object views. J Vis 10(22):1–13

    Google Scholar 

  • Sasaoka T, Asakura N, Kawahara T (2010) Effect of active exploration of 3-D object views on the view-matching process in object recognition. Perception 39:289–308

    Article  PubMed  Google Scholar 

  • Shepard RN (1987) Toward a universal law of generalization for psychological science. Science 237:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN (2001) Perceptual-cognitive universals as reflections of the world. Behav Brain Sci 24:581–601

    PubMed  CAS  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

    Article  Google Scholar 

  • Ullman S (1979) The interpretation of structure from motion. Proc R Soc Lond Ser B Biol Sci 203:405–426

    Article  CAS  Google Scholar 

  • Vuong QC, Friedman A, Read JC (2012) The relative weight of shape and non-rigid motion cues in object perception: a model of the parameters underlying dynamic object discrimination. J Vis 12(3):1–16

    Article  Google Scholar 

  • Wallis G (2002) The role of object motion in forging long-term representations of objects. Vis Cognit 9:233–247

    Article  Google Scholar 

  • Wallis G, Bülthoff HH (2001) Effects of temporal association on recognition memory. Proc Natl Acad Sci USA 98:4800–4804

    Article  PubMed  CAS  Google Scholar 

  • Wallis G, Backus BT, Langer M, Huebner G, Bülthoff H (2009) Learning illumination-and orientation-invariant representations of objects through temporal association. J Vis 9(7):6

    Article  PubMed  Google Scholar 

  • Wallraven C (2007) A computational recognition system grounded in perceptual research. Logos Verlag, Berlin. ISBN 978-3-8325-1662-8

    Google Scholar 

Download references

Acknowledgments

This research was supported by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (R31-1008-000-10008-0). We gratefully acknowledge the help of Chris West (http://www.west-racing.com/) who donated a version of his Mega-Fiers package for Unity for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wallraven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Wallraven, C. Exploiting object constancy: effects of active exploration and shape morphing on similarity judgments of novel objects. Exp Brain Res 225, 277–289 (2013). https://doi.org/10.1007/s00221-012-3368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3368-1

Keywords

Navigation