Skip to main content
Log in

Limited interaction between translation and visual motion aftereffects in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

After exposure to a moving sensory stimulus, subsequent perception is often biased in the opposite direction. This phenomenon, known as an aftereffect, has been extensively studied for optic flow stimuli where it is known as the visual motion aftereffect (MAE). Such visual motion can also generate the sensation of self-motion or vection. It has recently been demonstrated that fore-aft translation in darkness also produces an aftereffect. The current study examines the interaction between visual MAE and vestibular translation aftereffects. Human subjects participated in a two-interval experiment in which the first interval (adapter) was visual, translation, or both combined congruently or in conflict. Subjects identified the direction of the second (test) interval of either visual or translation using a forced-choice technique. The translation adapter had no influence on visual test stimulus perception, and the visual adapter did not influence vestibular test stimulus perception in any subjects. However, congruent visual and translation induced a significantly larger perceptual bias on the translation test stimulus than was observed for a translation only adapter. The congruent adapter caused the MAE to be diminished relative to a visual only adapter. Conflicting visual and vestibular adapters produced an aftereffect similar to that seen when the single adapting stimulus was the same modality as the test stimulus. These results suggest that unlike visual and translation stimuli whose combined influence on perception can be predicted based on the effects of each stimulus individually, the effects of combined visual and translation stimuli on aftereffects cannot be predicted from the influences of each stimulus individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addams R (1834) An account of a peculiar optical phenomenon seen after having looked at a moving body etc. Mag J Sci 5:373–374 (3rd series)

    Google Scholar 

  • Andersen GJ, Braunstein ML (1985) Induced self-motion in central vision. J Exp Psychol Hum Percept Perform 11:122–132

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Gu Y, Deangelis GC (2009) Multisensory integration: psychophysics, neurophysiology, and computation. Curr Opin Neurobiol 19:1–7

    Article  Google Scholar 

  • Anstis SM, Gregory RL (1965) The after-effect of seen motion: the role of retinal stimulation and of eye movement. Q J Exp Psychol 17:173–174

    Article  Google Scholar 

  • Anstis S, Verstraten FA, Mather G (1998) The motion aftereffect. Trends Cognit Sci 2:111–117

    Article  CAS  Google Scholar 

  • Ashida H, Lingnau A, Wall MB, Smith AT (2007) FMRI adaptation reveals separate mechanisms for first-order and second-order motion. J Neurophysiol 97:1319–1325. doi:10.1152/jn.00723.2006

    Article  PubMed  Google Scholar 

  • Benson AJ, Spencer MB, Stott JR (1986) Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 57:1088–1096

    PubMed  CAS  Google Scholar 

  • Bex PJ, Verstraten FA, Mareschal I (1996) Temporal and spatial frequency tuning of the flicker motion aftereffect. Vis Res 36:2721–2727

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Dichgans J, Koenig E (1973) Differential effects of central verses peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Dichgans J, Buchle W (1974) Motion habituation: inverted self-motion perception and optokinetic after-nystagmus. Exp Brain Res 21:337–352

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63. doi:10.1038/259

    Article  PubMed  CAS  Google Scholar 

  • Bubka A, Bonato F, Palmisano S (2008) Expanding and contracting optic-flow patterns and vection. Perception 37:704–711

    Article  PubMed  Google Scholar 

  • Cameron EL, Baker CL Jr, Boulton JC (1992) Spatial frequency selective mechanisms underlying the motion aftereffect. Vis Res 32:561–568

    Article  PubMed  CAS  Google Scholar 

  • Carlson VR (1962) Adaptation in the perception of visual velocity. J Exp Psychol 64:192–197

    Article  PubMed  CAS  Google Scholar 

  • Crane BT (2012) Fore-aft translation aftereffects. Exp Brain Res 219:477–487

    Article  PubMed  Google Scholar 

  • Culham JC, Verstraten FA, Ashida H, Cavanagh P (2000) Independent aftereffects of attention and motion. Neuron 28:607–615

    Article  PubMed  CAS  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  CAS  Google Scholar 

  • Fetsch CR, Turner AH, Deangelis GC, Angelaki DE (2009) Dynamic re-weighting of visual and vestibular cues during self-motion perception. J Neurosci 29:15601–15612

    Article  PubMed  CAS  Google Scholar 

  • Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15:146–154. doi:10.1038/nn.2983

    Article  CAS  Google Scholar 

  • Fischer MH, Kornmuller AE (1930) Optokinetic ausgeloste bewegungs-wahrnehmungen und optokinetinetisher nystagmus. J Psychol Neurol (Leipzig) 41:273–308

    Google Scholar 

  • Gianna CC, Heimbrand S, Nakamura T, Gresty MA (1995) Thresholds for perception of lateral motion in normal subjects and patients with bilateral loss of vestibular function. Acta Otolaryngol Suppl 520(Pt 2):343–346

    Article  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Goldstein AG (1957) Judgments of visual velocity as a function of length of observation time. J Exp Psychol 54:457–461

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Fetsch CR, Adeyemo B, Deangelis GC, Angelaki DE (2010) Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66:596–609. doi:10.1016/j.neuron.2010.04.026

    Article  PubMed  CAS  Google Scholar 

  • Harris LR, Morgan MJ, Still AW (1981) Moving and the motion after-effect. Nature 293:139–141

    Article  PubMed  CAS  Google Scholar 

  • Hiris E, Blake R (1992) Another perspective on the visual motion aftereffect. Proc Nat Acad Sci USA 89:9025–9028

    Article  PubMed  CAS  Google Scholar 

  • Johansson G (1977) Studies on visual perception of locomotion. Perception 6:365–376

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Verstraten FA (2005) Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization. Vis Res 45:3109–3116. doi:10.1016/j.visres.2005.05.014

    Article  PubMed  Google Scholar 

  • MacNeilage PR, Banks MS, DeAngelis GC, Angelaki DE (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci 30:9084–9094. doi:10.1523/JNEUROSCI.1304-10.2010

    PubMed  CAS  Google Scholar 

  • Mather G, Moulden B (1980) A simultaneous shift in apparent direction: further evidence for a “distribution-shift” model of direction coding. Q J Exp Psychol 32:325–333. doi:10.1080/14640748008401168

    Article  PubMed  CAS  Google Scholar 

  • Mather G, Pavan A, Campana G, Casco C (2008) The motion aftereffect reloaded. Trends Cognit Sci 12:481–487. doi:10.1016/j.tics.2008.09.002

    Article  Google Scholar 

  • Melcher GA, Henn V (1981) The latency of circular vection during different accelerations of the optokinetic stimulus. Percept Psychophys 30:552–556

    Article  PubMed  CAS  Google Scholar 

  • Moulden B (1980) After-effects and the integration of patterns of neural activity within a channel. Philos Trans R Soc Lond B Biol Sci 290:39–55

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Sato T (1995) Motion aftereffect with flickering test patterns reveals higher stages of motion processing. Vis Res 35:477–490

    Article  PubMed  CAS  Google Scholar 

  • Ohmi M, Howard IP (1988) Effect of stationary objects on illusory forward self-motion induced by a looming display. Perception 17:5–11

    Article  PubMed  CAS  Google Scholar 

  • Page WK, Duffy CJ (2003) Heading representation in MST: sensory interactions and population encoding. J Neurophysiol 89:1994–2013. doi:10.1152/jn.00493.2002

    Article  PubMed  Google Scholar 

  • Roditi RE, Crane BT (2012) Directional asymmetries and age effects in human self-motion perception. J Assoc Res Otolaryngol 13:381–401

    Article  PubMed  Google Scholar 

  • Sato Y, Toyoizumi T, Aihara K (2007) Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neural Comput 19:3335–3355. doi:10.1162/neco.2007.19.12.3335

    Article  PubMed  Google Scholar 

  • Seno T, Ito H, Sunaga S (2010) Vection aftereffects from expanding/contracting stimuli. See Perceiving 23:273–294

    Article  Google Scholar 

  • Shimozaki SS, Schoonveld WA, Eckstein MP (2012) A unified Bayesian observer analysis for set size and cueing effects on perceptual decisions and saccades. J Vis 12. doi: 10.1167/12.6.27

  • Soyka F, Robuffo Giordano P, Beykirch K, Bulthoff HH (2011) Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane. Experimental brain research. Experimentelle Hirnforschung. Exp Cerebrale 209:95–107. doi:10.1007/s00221-010-2523-9

    Google Scholar 

  • Teixeira RA, Lackner JR (1979) Optokinetic motion sickness: attenuation of visually-induced apparent self-rotation by passive head movements. Aviat Space Environ Med 50:264–266

    PubMed  CAS  Google Scholar 

  • Thompson P, Burr D (2009) Visual aftereffects. Curr Biol 19:R11–R14. doi:10.1016/j.cub.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  • Valko Y, Lewis RF, Priesol AJ, Merfeld DM (2012) Vestibular labyrinth contributions to human whole-body motion discrimination. J Neurosci 32:13537–13542. doi:10.1523/JNEUROSCI.2157-12.2012

    Article  PubMed  CAS  Google Scholar 

  • Verstraten FA, Fredericksen RE, van de Grind WA (1994) Movement aftereffect of bi-vectorial transparent motion. Vis Res 34:349–358

    Article  PubMed  CAS  Google Scholar 

  • Wade NJ, Swanston MT, de Weert CM (1993) On interocular transfer of motion aftereffects. Perception 22:1365–1380

    Article  PubMed  CAS  Google Scholar 

  • Wallach H, Flaherty EW (1975) A compensation for field expansion caused by moving forward. Percept Psychophys 17:445–449

    Article  Google Scholar 

  • Walsh EG (1961) Role of the vestibular apparatus in the perception of motion on a parallel swing. J Physiol 155:506–513

    PubMed  CAS  Google Scholar 

  • Wichmann FA, Hill NJ (2001a) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    Article  PubMed  CAS  Google Scholar 

  • Wichmann FA, Hill NJ (2001b) The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329

    Article  PubMed  CAS  Google Scholar 

  • Wong SC, Frost BJ (1981) The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept Psychophys 30:228–236

    Article  PubMed  CAS  Google Scholar 

  • Wozny DR, Shams L (2011) Computational characterization of visually induced auditory spatial adaptation. Front Integr Neurosci 5:75. doi:10.3389/fnint.2011.00075

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the National Institute on Deafness and Other Communication Disorders K23 DC011298. Additional support was provided by a clinician scientist grant from the Triological Society. Technical support was provided by Shawn Olmstead-Leahey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin T. Crane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, B.T. Limited interaction between translation and visual motion aftereffects in humans. Exp Brain Res 224, 165–178 (2013). https://doi.org/10.1007/s00221-012-3299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3299-x

Keywords

Navigation