Skip to main content
Log in

Vision-to-event and movement-to-event coordination in an unimanual circling task

Experimental Brain Research Aims and scope Submit manuscript

Abstract

Coordination of actions with events in extracorporeal space is essential for many everyday tasks. In the present study, we investigated how transformations, like in tool use, and varying the spatial context affect action coordination. For this aim, we used a circling task that required participants to coordinate the visual feedback of hand movements with a clockwise circling stimulus (event). The trajectories of stimulus and visual feedback were presented horizontally aligned (group horizontal), within each other (group interleaved) or vertically aligned (group vertical). Within groups, we varied the instructed rotation direction of stimulus and visual feedback (same and different), and y-direction of visual feedback relative to the stimulus (same and different). To dissociate movements and the associated proprioceptive/kinesthetic feedback from visual movement feedback, participants performed the tasks under regular and transformed visual feedback (180° angular shift). Results indicated that action coordination follows the principle of vision-to-event coordination (similar data patterns with regular and transformed feedback), but subtle effects of movement-to-event coordination were also observed (larger difference in performance between same y-direction and different y-direction conditions with regular than with transformed feedback). The presence of a transformation affected performance negatively. The different visual layouts affected the different conditions differentially, pointing to the importance of the visual context. In conclusion, vision-to-event coordination dominates unimanual action coordination. The quality of performance is influenced by perceptual processes based on differential processing of the horizontal and vertical axis, and based on Gestalt principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Alaerts K, Levin O, Swinnen SP (2007) Whether feeling or seeing is more accurate depends on tracking direction within the perception-action cycle. Behav Brain Res 178:229–234

    Article  PubMed  Google Scholar 

  • Aschersleben G, Prinz W (1995) Synchronizing actions with events: the role of sensory information. Percept Psychophys 57:305–317

    Article  PubMed  CAS  Google Scholar 

  • Bogaerts H, Buekers M, Zaal MJ, Swinnen SP (2003) When visuo-motor incongruence aids motor performance: the effect of perceiving motion structures during transformed visual feedback on bimanual coordination. Behav Brain Res 138:45–57

    Article  PubMed  Google Scholar 

  • Buekers MJ, Bogaerts HP, Swinnen SP, Helsen WF (2000) The synchronization of human arm movements to external events. Neurosci Lett 290:181–184

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Thomas J, Summers JJ, Walters MR, Semjen A (1997) The dynamics of bimanual circle drawing. Q J Exp Psychol 50(3):664–683

    Article  CAS  Google Scholar 

  • Collins DR, Turvey MT (1997) A stochastic analysis of superposed rhythmic synergies. Hum Mov Sci 16:33–80

    Article  Google Scholar 

  • Fleury M, Bard C, Gagnon M, Teasdale N (1992) Coincidence-anticipation timing: the perceptual-motor interface. In: Proteau L, Elliott D (eds) Vision and motor control. Elsevier, Amsterdam, pp 315–334

    Chapter  Google Scholar 

  • Fourneret P, Jeannerod M (1998) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action. Behav Brain Sci 24:869–937

    Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246(15):R1000–R1004

    PubMed  CAS  Google Scholar 

  • Klapp ST, Jagacinski RJ (2011) Gestalt principles in the control of motor action. Am Psych Bull 137(3):443–462

    Article  Google Scholar 

  • Kovacs A, Buchanan JJ, Shea CH (2010a) Impossible is nothing! 5:3 and 4:3 multi-frequency bimanual coordination. Exp Brain Res 201:249–259

    Article  PubMed  Google Scholar 

  • Kovacs A, Buchanan JJ, Shea CH (2010b) Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. J Exp Psychol Hum Percept Perform 36:936–954

    Article  PubMed  Google Scholar 

  • Kunde W, Müsseler J, Heuer H (2007) Spatial compatibility effects with tool use. Hum Factors 49:661–670

    Article  PubMed  Google Scholar 

  • Lepper M, Massen C, Prinz W (2008) What to do and how to do it: sequence learning of action effects and transformation rules. Acta Psychol 128(1):139–152

    Article  Google Scholar 

  • Massen C, Prinz W (2007) Programming tool-use actions. J Exp Psychol Hum Percep Perform 33:692–704

    Article  Google Scholar 

  • Mechsner F (2003) Gestalt factors in human movement coordination. Gestalt Theory 25:225–245

    Google Scholar 

  • Mechsner F (2004) A psychological approach to human voluntary movements. J Mot Behav 36:355–370

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti R, Umilta C (1988) Why are left-right spatial codes easier to form than above-below ones? Percept Psychophys 43:287–292

    Article  PubMed  CAS  Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154

    Article  Google Scholar 

  • Quinlan PT (2002) Evidence for the use of scene-based frames of reference in two-dimensional shape recognition. In: Tyler CW (ed) Human symmetry perception and its computational analysis. Mahwah, NJ, pp 85–109

    Google Scholar 

  • Rieger M, Knoblich G, Prinz W (2005) Compensation for and adaptation to changes in the environment. Exp Brain Res 163:487–502

    Article  PubMed  Google Scholar 

  • Roerdink M, Peper C, Beek P (2005) Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: Tracking performance and visual search behavior. Hum Mov Sci 24:379–402

    Article  PubMed  CAS  Google Scholar 

  • Salter JE, Wishart LR, Lee TD, Simon D (2004) Perceptual and motor contributions to bimanual coordination. Neurosci Lett 363:102–107

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RC, Carello C, Turvey MT (1990) Phase Transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–247

    Article  PubMed  CAS  Google Scholar 

  • Sülzenbrück S, Heuer H (2010) The trajectory of adaptation to the visuomotor transformation of virtual and real sliding levers. Exp Brain Res 201:549–560

    Article  PubMed  Google Scholar 

  • Sutter C (2007) Sensumotor transformation of input devices and the impact on practice and task difficulty. Ergonomics 50(12):1999–2016

    Article  PubMed  CAS  Google Scholar 

  • Sutter C, Müsseler J, Bardos L (2011) Effects of sensorimotor transformations with graphical input devices. Behav Inform Technol 30:415–424

    Google Scholar 

  • Swinnen SP, Jardin K, Meulenbroek R, Dounskaia N, Hofkens-Van Den Brandt M (1997) Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. J Cogn Neurosci 9(3):348–377

    Article  Google Scholar 

  • Tomatsu S, Ohtsuki T (2005) The effect of transformed feedback on bimanual circling movement. Exp Brain Res 166:277–286

    Article  PubMed  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005a) Human movement coordination implicates relative direction as the information for relative phase. Exp Brain Res 164:351–361

    Article  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005b) Perceptual coupling in rhythmic movement coordination: stable perception leads to stable action. Exp Brain Res 164:517–528

    Article  PubMed  Google Scholar 

  • Wimmers RH, Beek PJ, van Wieringen PCW (1992) Phase transitions in rhythmic tracking movements: a case of unilateral coupling. Hum Mov Sci 11:217–226

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gudrun Henze, Silke Meissner, Roman Schönitz, and Anja Herrmann for their help with the experimental setup, data collection, and data preparation. Further thanks go to Andreas Romeyke und Henrik Grunert for their help with programming the experiments and building the experimental apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Rieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, S., Prinz, W. & Rieger, M. Vision-to-event and movement-to-event coordination in an unimanual circling task. Exp Brain Res 218, 237–246 (2012). https://doi.org/10.1007/s00221-012-3005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3005-z

Keywords

Navigation