Skip to main content

Advertisement

Log in

Touch perception throughout working life: effects of age and expertise

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Fine motor skills including precise tactile and haptic perception are essential to the manipulation of objects. With increasing age, one’s perception decreases; however, little is known about the state of touch perception in middle-aged adults. This study investigated the extent to which the decline in touch perception affects adults throughout their working life. In addition, the influence of work-related expertise on tactile and haptic perception was examined in an attempt to determine whether expertise, in the form of the frequent use of the fingers, affects perception and counters age-related losses. The study was conducted with subjects from three age groups (18–25, 34–46, and 54–65 years) with two levels of expertise. Expertise was classified by the subjects’ occupations. Five sensory tasks of touch perception were conducted. The results confirmed age-related changes in tactile perception over the span of one’s working life. Older workers were proven to have lower tactile performance than younger adults. However, middle-aged workers were hardly affected by the perception losses and did not differ significantly from younger adults. Work-related expertise was not proven to either affect tactile and haptic perception or counteract age-related declines. We conclude that the age-related decline gets steeper in the late working life and that specific work-related expertise does not lead to generally improved touch perception that would result in lower thresholds and improved performance in non-expertise specific tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the terms ‘middle-aged’ and ‘old’ in this study refer to age groups that are younger compared to those in the gerontology literature.

  2. Results of regression analysis: F(3,64) = 9.26, P < 0.01).

References

  • Alary F, Duquette M, Goldstein R, Elaine Chapman C, Voss P, La Buissonnière-Ariza V et al. (2009). Tactile acuity in the blind: a closer look reveals superiority over the sighted in some but not all cutaneous tasks. Neuropsychologia 47(10):2037–2043

  • Allard F, Starkes JL (1980) Perception in sport: volleyball. J Sport Psychol 2:22–33

    Google Scholar 

  • Ballesteros S, Heller MA (2008) Haptic object identification. In: Grunwald M (ed) Human haptic perception: basics and applications. Birkhäuser, Basel, Boston, p ix, p 676

  • Bleyenheuft Y, Thonnard JL (2007) Tactile spatial resolution measured manually: a validation study. Somatosens Mot Res 24(3):111–114

    Article  PubMed  Google Scholar 

  • Bortz J (1999) Statistik für Sozialwissenschaftler. Springer, Berlin

    Google Scholar 

  • Cole KJ (1991) Grasp force control in older adults. J Mot Behav 23(4):251–258

    Article  PubMed  CAS  Google Scholar 

  • Collins DF, Knight B, Prochazka A (1999) Contact-evoked changes in EMG activity during human grasp. J Neurophysiol 81(5):2215–2225

    Google Scholar 

  • Craig JC, Kisner JM (1998) Factors affecting tactile spatial acuity. Somatosens Mot Res 15(1):29–45

    Article  PubMed  CAS  Google Scholar 

  • Craig JC, Rhodes RP, Busey TA, Kewley-Port D, Humes LE (2010) Aging and tactile temporal order. Atten Percept Psychophys 72(1):226–235

    Article  PubMed  Google Scholar 

  • Decker SL (2010) Tactile measures in the structure of intelligence. Can J Exp Psychol 64(1):53–59

    Article  PubMed  Google Scholar 

  • Deshpande N, Metter EJ, Ling S, Conwit R, Ferrucci L (2008) Physiological correlates of age-related decline in vibrotactile sensitivity. Neurobiol Aging 29(5):765–773

    Article  PubMed  Google Scholar 

  • Dinse HR (2006) Cortical reorganization in the aging brain. Prog Brain Res 157:57–80

    Article  PubMed  Google Scholar 

  • Dinse HR, Kalisch T, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M (2005) Improving human haptic performance in normal and impaired human populations through unattended activation-based learning. ACM Trans Appl Percept 2(2):71–88

    Article  Google Scholar 

  • Dinse HR, Kleibel N, Kalisch T, Ragert P, Wilimzig C, Tegenthoff M (2006) Tactile coactivation resets age-related decline of human tactile discrimination. Ann Neurol 60(1):88–94

    Article  PubMed  Google Scholar 

  • Dinse HR, Wilimzig C, Kalisch T (2008) Learning effects in haptic perception. In: Grunwald M (ed) Human haptic perception: basics and applications. Birkhäuser, Basel, Boston, p ix, p 676

  • Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270(5234):305–307

    Article  PubMed  CAS  Google Scholar 

  • Ericsson KA, Smith J (1991) Toward a general theory of expertise: prospects and limits. Cambridge University Press, Cambridge

    Google Scholar 

  • Ericsson K, Prietula M, Cokely E (2007) The making of an expert. Har Bus Rev 85(7/8):114

    Google Scholar 

  • Förster J, Higgins ET, Bianco AT (2003) Speed/accuracy decisions in task performance: built-in trade-off or separate strategic concerns?* 1. Organ Behav Hum Decis Process 90(1):148–164

    Article  Google Scholar 

  • Godde B, Diamond ME, Braun C (2010) Feeling for space or for time: Task-dependent modulation of the cortical representation of identical vibrotactile stimuli. Neurosci Lett 480(2):143–147

    Article  PubMed  CAS  Google Scholar 

  • Goldreich D, Kanics IM (2003) Tactile acuity is enhanced in blindness. J Neurosci 23(8):3439–3445

    PubMed  CAS  Google Scholar 

  • Goldreich D, Kanics IM (2006) Performance of blind and sighted humans on a tactile grating detection task. Percept Psychophys 68(8):1363–1371

    Article  PubMed  Google Scholar 

  • Grant AC, Thiagarajah MC, Sathian K (2000) Tactile perception in blind braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept Psychophys 62:301–312

    Article  PubMed  CAS  Google Scholar 

  • Greenspan J, Bolanowski S (1996) The psychophysics of tactile perception and its peripheral physiological basis. Pain Touch 2:25–103

    Article  Google Scholar 

  • Gruber H, Lehmann AC (2007) Entwicklung von Expertise und Hochleistung in Musik und Sport, vol 26. Universität Regensburg, Lehrstuhl für Lehr-Lern-Forschung, Regensburg

    Google Scholar 

  • Harris JA, Arabzadeh E, Fairhall AL, Benito C, Diamond ME (2006) Factors affecting frequency discrimination of vibrotactile stimuli: implications for cortical encoding. PLoS One 1:e100. doi:10.1371/journal.pone.0000100

    Article  PubMed  Google Scholar 

  • Helsen W, Starkes J (1999) A multidimensional approach to skilled perception and performance in sport. Appl Cogn Psychol 13(1):1–27

    Article  Google Scholar 

  • Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP (2005) Neural basis of aging: the penetration of cognition into action control. J Neurosci 25(29):6787–6796

    Article  PubMed  CAS  Google Scholar 

  • Hodges NJ, Starkes JL, MacMahon C (2006) Expert performance in sport: a cognitive perspective. In: Ericsson KA, Charness N, Feltovich PJ, Hoffmann RR (eds) The Cambridge handbook of expertise and expert performance. Cambridge University Press, Cambridge, pp 471–488

    Google Scholar 

  • Hollins M (2002) Touch and haptics. In: Pashler HE (ed) Stevens’ handbook of experimental psychology, vol 1, 3rd edn. Wiley, New York

    Google Scholar 

  • Hsiao SS (2010) Cutaneous perception—physiology. The encyclopedia of perception. SAGE, Thousand Oaks

    Google Scholar 

  • Johnson K (2001) Neural basis of haptic perception. In: Pashler HE (ed) Stevens’ handbook of experimental psychology, vol 1, 3rd edn. Wiley, New York

    Google Scholar 

  • Johnson KO, Hsiao SS (1992) Neural Mechanisms of Tactual form and Texture Perception. Annu Rev Neurosci 15(1):227–250

    Article  PubMed  CAS  Google Scholar 

  • Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539–558

    Article  PubMed  CAS  Google Scholar 

  • Kalisch T, Tegenthoff M, Dinse HR (2008) Improvement of sensorimotor functions in old age by passive sensory stimulation. Clin Interv Aging 3(4):673–690

    PubMed  Google Scholar 

  • Kalisch T, Ragert P, Schwenkreis P, Dinse HR, Tegenthoff M (2009) Impaired tactile acuity in old age is accompanied by enlarged hand representations in somatosensory cortex. Cereb Cortex 19(7):1530–1538

    Article  PubMed  Google Scholar 

  • Kaneko A, Asai N, Kanda T (2005) The influence of age on pressure perception of static and moving two-point discrimination in normal subjects. J Hand Ther 18(4):421–424 (quiz 425)

    Article  PubMed  Google Scholar 

  • Karim AA, Schuler A, Hegner YL, Friedel E, Godde B (2006) Facilitating effect of 15-Hz repetitive transcranial magnetic stimulation on tactile perceptual learning. J Cogn Neurosci 18(9):1577–1585

    Article  PubMed  Google Scholar 

  • Kinoshita H, Francis PR (1996) A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol Occup Physiol 74(5):450–460

    Article  PubMed  CAS  Google Scholar 

  • Lacey S, Sathian K (2008) Haptically evoked activation of visual cortex. In: Grunwald M (ed) Human haptic perception: basics and applications. Birkhäuser, Basel, Boston, pp 251–257

  • Leek MR (2001) Adaptive procedures in psychophysical research. Percept Psychophys 63(8):1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Legge GE, Madison C, Vaughn BN, Cheong AM, Miller JC (2008) Retention of high tactile acuity throughout the life span in blindness. Percept Psychophys 70(8):1471–1488

    Article  PubMed  Google Scholar 

  • Manning H, Tremblay F (2006) Age differences in tactile pattern recognition at the fingertip. Somatosens Mot Res 23(3–4):147–155

    Article  PubMed  Google Scholar 

  • Morrow DG, Leirer V, Altieri P, Fitzsimmons C (1994) When expertise reduces age differences in performance. Psychol Aging 9(1):134–148

    Article  PubMed  CAS  Google Scholar 

  • Nevid JS (2003) Psychology: concepts and applications. Houghton Mifflin, Boston

    Google Scholar 

  • Nielsen JB, Cohen LG (2008) The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J Physiol 586(1):65–70

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Kappers AML, Beers AM, Scott AK, Norman HF, Koenderink JJ (2011) Aging and the haptic perception of 3D surface shape. Atten Percept Psychophys 73:908–918

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116(1):39–52

    Article  PubMed  Google Scholar 

  • Phillips LH, Rabbitt PMA (1995) Impulsivity and speed-accuracy strategies in intelligence test performance. Intelligence 21(1):13–29

    Article  Google Scholar 

  • Pick P, Brüggemann J, Grote C, Grünhagen E, Lampert T (2004) Schwerpunktbericht zur Gesundheitsberichterstattung des Bundes. Robert-Koch-Institut, Pflege Berlin

    Google Scholar 

  • Ragert P, Schmidt A, Altenmüller E, Dinse HR (2004) Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci 19(2):473–478

    Article  PubMed  Google Scholar 

  • Röder B, Rösler F, Spence C (2004) Early vision impairs tactile perception in the blind. Curr Biol 14(2):121–124

    PubMed  Google Scholar 

  • Rosenbaum DA (2010) Human motor control. Academic Press/Elsevier, San Diego

  • Salthouse TA (1985) A theory of cognitive aging. North-Holland, Oxford

    Google Scholar 

  • Salthouse TA, Berish DE, Miles JD (2002) The role of cognitive stimulation on the relations between age and cognitive functioning. Psychol Aging 17(4):548–557

    Article  PubMed  Google Scholar 

  • Sathian K (2005) Visual cortical activity during tactile perception in the sighted and the visually deprived. Dev Psychobiol 46(3):279–286

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ (1998) Aging and exercise. Encyclopedia of sports medicine and science. In: Fahey TD (ed) Internet Society for Sport Science. http://www.sportsci.org. Accessed 14 March 2011

  • Sonnentag S, Kleine BM (2000) Deliberate practice at work: a study with insurance agents. J Occup Organ Psychol 73(1):87–102

    Article  Google Scholar 

  • Stankov L, Seizova-Cajic T, Roberts RD (2001) Tactile and kinesthetic perceptual processes within the taxonomy of human cognitive abilities. Intelligence 29(1):1–29

    Article  Google Scholar 

  • Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E (1998) Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci 18(11):4417–4423

    PubMed  CAS  Google Scholar 

  • Stevens JC (1992) Aging and spatial acuity of touch. J Gerontol 47(1):P35–P40

    PubMed  CAS  Google Scholar 

  • Stevens JC, Patterson MQ (1995) Dimensions of spatial acuity in the touch sense: changes over the life span. Somatosens Mot Res 12(1):29–47

    Article  PubMed  CAS  Google Scholar 

  • Stevens JC, Foulke E, Patterson M (1996) Tactile acuity, aging, and Braille reading in long-term blindness. J Exp Psychol Appl 2:91–106

    Article  Google Scholar 

  • Trautmann M, Voelcker-Rehage C, Godde B (2011) Fit between workers’ competencies and job demands as predictor for job performance over the work career [Passung zwischen Kompetenzen der Mitarbeiter und Anforderungen des Arbeitsplatzes als Prädiktor für Leistung über das Arbeitsleben]. J Labour Market Res (in press). doi:10.1007/s12651-011-0078-2

  • Tremblay F, Wong K, Sanderson R, Cote L (2003) Tactile spatial acuity in elderly persons: assessment with grating domes and relationship with manual dexterity. Somatosens Mot Res 20(2):127–132

    Article  PubMed  Google Scholar 

  • Tsang PS, Shaner TL (1998) Age, attention, expertise, and time-sharing performance. Psychol Aging 13(2):323–347

    Article  PubMed  CAS  Google Scholar 

  • Van Boven RW, Johnson KO (1994) The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger. Neurology 44(12):2361–2366

    PubMed  Google Scholar 

  • Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual-Leone A (2000) Tactile spatial resolution in blind braille readers. Neurology 54(12):2230–2236

    PubMed  Google Scholar 

  • Vega-Bermudez F, Johnson KO (2001) Differences in spatial acuity between digits. Neurology 56(10):1389–1391

    PubMed  CAS  Google Scholar 

  • Verrillo RT, Bolanowski SJ, Gescheider GA (2002) Effect of aging on the subjective magnitude of vibration. Somatosens Mot Res 19(3):238–244

    Article  PubMed  Google Scholar 

  • Voelcker-Rehage C, Godde B (2010) High frequency sensory stimulation improves tactile but not motor performance in older adults. Mot Control 14(4):460

    Google Scholar 

  • Wickremaratchi MM, Llewelyn JG (2005) Effects of ageing on touch. Postgrad Med J 2006(82):301–304

    Google Scholar 

  • Wong M, Gnanakumaran V, Goldreich D (2011) Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms. J Neurosci 31(19):7028–7037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the German Research Foundation (Deutsche Forschungsgesellschaft, DFG, VO 1432/7-1) as a part of the DFG priority program Age-differentiated work systems (SPP 1184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Godde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, EM., Voelcker-Rehage, C., Vieluf, S. et al. Touch perception throughout working life: effects of age and expertise. Exp Brain Res 216, 287–297 (2012). https://doi.org/10.1007/s00221-011-2931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2931-5

Keywords

Navigation