Skip to main content
Log in

High-frequency microstimulation in human globus pallidus and substantia nigra

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Deep brain stimulation of the basal ganglia and other brain regions has been used successfully to treat a variety of neurological disorders. However, the mechanisms by which it works, remain unclear. In a previous study, we showed that locally delivered single current pulses delivered from a nearby microelectrode are sufficient to inhibit firing in the internal globus pallidus for tens of milliseconds. The GPi and the substantia nigra pars reticulata are the output nuclei of the basal ganglia and share many anatomical and physiological features. The goal of the current study was to examine the after-effects of trains of high-frequency microstimulation on neuronal firing in the GPi of Parkinson’s disease and dystonia patients as well as in the SNr of PD patients. Microelectrode recordings and microstimulation were performed in a total of 57 patients during stereotactic surgery. We found that firing in the GPi and SNr is inhibited for several hundreds of milliseconds following the end of a short, 200 Hz high-frequency train delivered through the recording electrode (e.g., on average 618 ms when stimulating in the SNr with a 0.5 s train of 4 μA pulses at 200 Hz). Inhibition duration usually increased with increasing current intensity, train frequency and generally peaked for trains of 1–2 s, while it decreased with increasing train durations. Statistical analysis with general linear models revealed a significant linear relationship between current intensity and inhibition duration in all nuclei and patient groups. There was also a significant relationship between train frequency and inhibition duration in the SNr and GPi of PD patients and between train duration and inhibition duration in the GPi of PD patients. There was no significant difference in inhibition duration across patient groups but the current threshold for inhibition was significantly different in the SNr compared to the GPi. The characteristics of the inhibition observed are consistent with stimulation-induced GABA release following activation of the GABAergic afferents in the SNr and GPi. The findings suggest that high-frequency microstimulation of the GPi and SNr depresses local neuronal activity and synaptic transmission, and such mechanisms may contribute to the therapeutic effects of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89:1150–1160

    Article  PubMed  Google Scholar 

  • Bar-Gad I, Elias S, Vaadia E, Bergman H (2004) Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation. J Neurosci 24:7410–7419

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99:289–295

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Bioulac B, Gross C (1996) High frequency stimulation of the internal globus pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett 215:17–20

    Article  CAS  PubMed  Google Scholar 

  • Burbaud P, Gross C, Bioulac B (1994) Effect of subthalamic high frequency stimulation on substantia nigra pars reticulata and globus pallidus neurons in normal rats. J Physiol Paris 88:359–361

    Article  CAS  PubMed  Google Scholar 

  • Butson CR, McIntyre CC (2006) Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng 3:1–8

    Article  PubMed  Google Scholar 

  • Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ (2010) Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson’s patients. J Neurophysiol 103(2):962–967

    Article  PubMed  Google Scholar 

  • Chastan N, Westby GW, Yelnik J, Bardinet E, Do MC, Agid Y, Welter ML (2009) Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132:172–184

    Article  CAS  PubMed  Google Scholar 

  • Chin G, Hutchison WD (2008) Effects of cobalt and bicuculline on focal microstimulation of rat pallidal neurons in vivo. Brain Stimul 1:134–150

    Article  PubMed  Google Scholar 

  • Deniau JM, Kitai ST, Donoghue JP, Grofova I (1982) Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. An electrophysiological and morphological study. Exp Brain Res 47:105–113

    Article  CAS  PubMed  Google Scholar 

  • Deniau JM, Mailly P, Maurice N, Charpier S (2007) The pars reticulata of the substantia nigra: a window to basal ganglia output. Prog Brain Res 160:151–172

    Article  CAS  PubMed  Google Scholar 

  • Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574

    CAS  PubMed  Google Scholar 

  • Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156:274–281

    Article  PubMed  Google Scholar 

  • Galati S, Mazzone P, Fedele E, Pisani A, Peppe A, Pierantozzi M, Brusa L, Tropepi D, Moschella V, Raiteri M, Stanzione P, Bernardi G, Stefani A (2006) Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson’s disease. Eur J Neurosci 23:2923–2928

    Article  PubMed  Google Scholar 

  • Galvan A, Kuwajima M, Smith Y (2006) Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 143:351–375

    Article  CAS  PubMed  Google Scholar 

  • Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28:209–216

    Article  CAS  PubMed  Google Scholar 

  • Hallworth NE, Bevan MD (2005) Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors. J Neurosci 25:6304–6315

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    CAS  PubMed  Google Scholar 

  • Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, McIntyre CC (2008) Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol 100:2549–2563

    Article  PubMed  Google Scholar 

  • Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5:294–308

    Article  PubMed  Google Scholar 

  • Kaneda K, Kita H (2005) Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. J Neurophysiol 94:1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM (1999) Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology 53:871–874

    CAS  PubMed  Google Scholar 

  • Kumar R, Lang AE, Rodriguez-Oroz MC, Lozano AM, Limousin P, Pollak P, Benabid AL, Guridi J, Ramos E, van der LC, Vandewalle A, Caemaert J, Lannoo E, van den AD, Vingerhoets G, Wolters M, Obeso JA (2000) Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology 55:S34–S39

    CAS  PubMed  Google Scholar 

  • Lafreniere-Roula M, Hutchison WD, Lozano AM, Hodaie M, Dostrovsky JO (2009) Microstimulation-induced inhibition as a tool to aid targeting the ventral border of the subthalamic nucleus. J Neurosurg 111:724–728

    Article  PubMed  Google Scholar 

  • Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC (2009) In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng 6:046001

    Article  PubMed  Google Scholar 

  • Levy R, Lozano AM, Hutchison WD, Dostrovsky JO (2007) Dual microelectrode technique for deep brain stereotactic surgery in humans. Neurosurgery 60:277–283

    Article  PubMed  Google Scholar 

  • Loddenkemper T, Pan A, Neme S, Baker KB, Rezai AR, Dinner DS, Montgomery EB Jr, Luders HO (2001) Deep brain stimulation in epilepsy. J Clin Neurophysiol 18:514–532

    Article  CAS  PubMed  Google Scholar 

  • Lozano A, Hutchison W, Kiss Z, Tasker R, Davis K, Dostrovsky J (1996) Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg 84:194–202

    Article  CAS  PubMed  Google Scholar 

  • Mailly P, Charpier S, Menetrey A, Deniau JM (2003) Three-dimensional organization of the recurrent axon collateral network of the substantia nigra pars reticulata neurons in the rat. J Neurosci 23:5247–5257

    CAS  PubMed  Google Scholar 

  • Maltete D, Jodoin N, Karachi C, Houeto JL, Navarro S, Cornu P, Agid Y, Welter ML (2007) Subthalamic stimulation and neuronal activity in the substantia nigra in Parkinson’s disease. J Neurophysiol 97:4017–4022

    Article  CAS  PubMed  Google Scholar 

  • Merello M, Nouzeilles MI, Kuzis G, Cammarota A, Sabe L, Betti O, Starkstein S, Leiguarda R (1999) Unilateral radiofrequency lesion versus electrostimulation of posteroventral pallidum: a prospective randomized comparison. Mov Disord 14:50–56

    Article  CAS  PubMed  Google Scholar 

  • Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr (2006) Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol 117:2691–2702

    Article  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1991) Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Res 549:285–291

    Article  CAS  PubMed  Google Scholar 

  • Nambu A (2007) Globus pallidus internal segment. Prog Brain Res 160:135–150

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Levesque M, Parent A (1999) The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. J Chem Neuroanat 16:153–165

    Article  CAS  PubMed  Google Scholar 

  • Pralong E, Debatisse D, Maeder M, Vingerhoets F, Ghika J, Villemure JG (2003) Effect of deep brain stimulation of GPI on neuronal activity of the thalamic nucleus ventralis oralis in a dystonic patient. Neurophysiol Clin 33:169–173

    Article  PubMed  Google Scholar 

  • Precht W, Yoshida M (1971) Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res 32:229–233

    Article  CAS  PubMed  Google Scholar 

  • Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD (2009) Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain 132:309–318

    Article  CAS  PubMed  Google Scholar 

  • Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358:119–141

    Article  CAS  PubMed  Google Scholar 

  • Starr PA, Rau GM, Davis V, Marks WJ Jr, Ostrem JL, Simmons D, Lindsey N, Turner RS (2005) Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 93(6):3165–3176

    Article  PubMed  Google Scholar 

  • Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57:448–452

    Article  PubMed  Google Scholar 

  • Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J 17:1820–1830

    Article  CAS  PubMed  Google Scholar 

  • Tang JK, Moro E, Mahant N, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2007) Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson’s disease. J Neurophysiol 98(2):720–729

    Article  PubMed  Google Scholar 

  • Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61:89–96

    Article  PubMed  Google Scholar 

  • Windels F, Kiyatkin EA (2004) GABA, not glutamate, controls the activity of substantia nigra reticulata neurons in awake, unrestrained rats. J Neurosci 24:6751–6754

    Article  CAS  PubMed  Google Scholar 

  • Windels F, Kiyatkin EA (2006) GABAergic mechanisms in regulating the activity state of substantia nigra pars reticulata neurons. Neuroscience 140:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, Savasta M (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12:4141–4146

    Article  CAS  PubMed  Google Scholar 

  • Wu YR, Levy R, Ashby P, Tasker RR, Dostrovsky JO (2001) Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov Disord 16:208–216

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Precht W (1971) Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res 32:225–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan O. Dostrovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafreniere-Roula, M., Kim, E., Hutchison, W.D. et al. High-frequency microstimulation in human globus pallidus and substantia nigra. Exp Brain Res 205, 251–261 (2010). https://doi.org/10.1007/s00221-010-2362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2362-8

Keywords

Navigation