Skip to main content
Log in

TMS modulation of visual and auditory processing in the posterior parietal cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Audio-visual stimuli typically yield faster responses than isolated modality-specific ones. This crossmodal speed advantage depends upon efficient multisensory integration mechanisms in the brain. Here, we used repetitive transcranial magnetic stimulation (rTMS) to address the role of the posterior parietal cortex, in particular of the inferior parietal lobule (IPL), in speeding up responses to crossmodal stimuli. The results show that rTMS over IPL impairs the response to contralateral modality-specific visual and auditory targets without affecting the response speed advantage following audio-visual targets. Furthermore, this speed advantage is subserved by a neural coactivation mechanism suggesting a summation in a given neural site. Control rTMS over V1 impaired only contralateral visual responses without affecting the response to auditory or audio-visual targets. These results suggest that the response speed advantage for crossmodal targets is maintained in spite of the IPL interference that impairs modality-specific responses. The possible role of alternative sites for the audio-visual advantage, such as the superior colliculus, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In fact, there was even a tendency towards a greater violation of the race inequality after degrading the response to unimodal with parietal rTMS. This finding could suggest a stronger multisensory effect, although, as such, it has not been demonstrated that a greater violation of the inequality implies a change of any precise neural response.

References

  • Alvarado JC, Vaughan JW, Stanford TR, Stein BE (2007) Multisensory versus unisensory integration: contrasting modes in the superior colliculus. J Neurophysiol 97:3193–3205

    Article  PubMed  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B Biol Sci 352:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS (2005) See me, hear me, touch me: multisensory integration in lateral occipital–temporal cortex. Curr Opin Neurobiol 15:145–153

    Article  PubMed  CAS  Google Scholar 

  • Bolognini N, Maravita A (2007) Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Curr Biol 17:1890–1895

    Article  PubMed  CAS  Google Scholar 

  • Bolognini N, Rasi F, Coccia M, Ladavas E (2005) Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128:2830–2842

    Article  PubMed  Google Scholar 

  • Bolognini N, Savazzi S, Bricolo E, Marzi C, Maravita A (2007) The role of superior colliculus in audio-visual integration in humans: clues from the redundant target effect. In: Cognitive Neuroscience Society Annual Meeting, New York

  • Bremmer F, Schlack A, Duhamel JR, Graf W, Fink GR (2001a) Space coding in primate posterior parietal cortex. Neuroimage 14:S46–S51

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001b) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Brozzoli C, Dematte ML, Pavani F, Frassinetti F, Farnè A (2006) Neglect and extinction: within and between sensory modalities. Restor Neurol Neurosci 24:217–232

    PubMed  Google Scholar 

  • Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA, Hansen PC, Iversen SD, Brammer MJ (2001) Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage 14:427–438

    Article  PubMed  CAS  Google Scholar 

  • Cappelletti M, Barth H, Fregni F, Spelke ES, Pascual-Leone A (2007) rTMS over the intraparietal sulcus disrupts numerosity processing. Exp Brain Res 179:631–642

    Article  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    PubMed  CAS  Google Scholar 

  • Clarke S, Thiran AB (2004) Auditory neglect: what and where in auditory space. Cortex 40:291–300

    Article  PubMed  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283

    Article  PubMed  CAS  Google Scholar 

  • Duhamel J, Colby C, Goldberg M (1991) Congruent representation of visual and somatosensory space in single neurons of monkey ventral intraparietal area (area VIP). In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 223–236

    Google Scholar 

  • Duncan J, Humphreys G, Ward R (1997) Competitive brain activity in visual attention. Curr Opin Neurobiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Frassinetti F, Bolognini N, Bottari D, Bonora A, Ladavas E (2005) Audiovisual integration in patients with visual deficit. J Cogn Neurosci 17:1442–1452

    Article  PubMed  Google Scholar 

  • Gondan M, Niederhaus B, Rosler F, Roder B (2005) Multisensory processing in the redundant-target effect: a behavioral and event-related potential study. Percept Psychophys 67:713–726

    PubMed  Google Scholar 

  • Graziano MS, Gross CG (1998) Spatial maps for the control of movement. Curr Opin Neurobiol 8:195–201

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303

    Article  PubMed  Google Scholar 

  • Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522

    PubMed  CAS  Google Scholar 

  • Jiang W, Jiang H, Stein BE (2002) Two corticotectal areas facilitate multisensory orientation behavior. J Cogn Neurosci 14:1240–1255

    Article  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Ungerleider LG (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39:1263–1276

    Article  PubMed  CAS  Google Scholar 

  • Knecht S, Ellger T, Breitenstein C, Bernd Ringelstein E, Henningsen H (2003) Changing cortical excitability with low-frequency transcranial magnetic stimulation can induce sustained disruption of tactile perception. Biol Psychiatry 53:175–179

    Article  PubMed  Google Scholar 

  • Lewald J, Foltys H, Topper R (2002) Role of the posterior parietal cortex in spatial hearing. J Neurosci 22:RC207

    PubMed  Google Scholar 

  • Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271

    Article  PubMed  CAS  Google Scholar 

  • Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A (2006) Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol 117:455–471

    Article  PubMed  Google Scholar 

  • Maravita A, Savazzi S, Bricolo E, Penati V, Marzi C (2005) Role of superior colliculus in audio-visual redundancy gain. In: Sixth International Multisensory Research Forum, Rovereto Italy

  • Maravita A, Bolognini N, Bricolo E, Marzi CA, Savazzi S (2008) Is audiovisual integration subserved by the superior colliculus in humans? NeuroReport 19:271–275

    Article  PubMed  Google Scholar 

  • Merabet L, Thut G, Murray B, Andrews J, Hsiao S, Pascual-Leone A (2004) Feeling by sight or seeing by touch? Neuron 42:173–179

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662

    PubMed  CAS  Google Scholar 

  • Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cog Psychol 14:247–279

    Article  CAS  Google Scholar 

  • Nachev P, Husain M (2006) Disorders of visual attention and the posterior parietal cortex. Cortex 42:766–773

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    Article  PubMed  CAS  Google Scholar 

  • Pavani F, Ladavas E, Driver J (2003) Auditory and multisensory aspects of visuospatial neglect. Trends Cogn Sci 7:407–414

    Article  PubMed  Google Scholar 

  • Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590

    PubMed  CAS  Google Scholar 

  • Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472

    Article  PubMed  CAS  Google Scholar 

  • Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107

    Article  PubMed  Google Scholar 

  • Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616–4625

    Article  PubMed  CAS  Google Scholar 

  • Schröger E, Widmann A (1998) Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology 37:755–759

    Article  Google Scholar 

  • Schwarz W (1994) Diffusion, superposition, and the redundant-targets effect. J Math Psychol 50:4–520

    Google Scholar 

  • Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. NeuroReport 18:787–792

    Article  PubMed  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  PubMed  CAS  Google Scholar 

  • Stein BE (2005) The development of a dialogue between cortex and midbrain to integrate multisensory information. Exp Brain Res 166:305–315

    Article  PubMed  Google Scholar 

  • Stein BE, Meredith M (1993) The merging of the senses. MIT, Cambridge

    Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Huneycutt WS, Meredith MA (1988) Neurons and behavior: the same rules of multisensory integration apply. Brain Res 448:355–358

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) A co-planar stereotactic Atlas of the human brain. Thieme Verlag, Stuttgart

    Google Scholar 

  • Vallar G, Bottini G, Paulesu E (2003) Neglect syndromes: the role of the parietal cortex. Adv Neurol 93:293–319

    PubMed  Google Scholar 

  • Wallace MT, Meredith MA, Stein BE (1992) Integration of multiple sensory modalities in cat cortex. Exp Brain Res 91:484–488

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, 5–7 June 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Ministero Italiano dell’Università e della Ricerca Scientifica (MIUR) to AM. We thank A. Pascual-Leone and B.E. Stein for insightful discussions and Carlo Toneatto for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bolognini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolognini, N., Miniussi, C., Savazzi, S. et al. TMS modulation of visual and auditory processing in the posterior parietal cortex. Exp Brain Res 195, 509–517 (2009). https://doi.org/10.1007/s00221-009-1820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1820-7

Keywords

Navigation