Skip to main content
Log in

Treadmill locomotion captures visual perception of apparent motion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A visual illusion of perceived motion direction induced by treadmill locomotion is reported. Directionally ambiguous motions of shifting frames of sinusoidal horizontal gratings are perceived moving downward more frequently when the stimuli are shown in front of the observers’ feet while walking on a treadmill. To confirm this effect quantitatively, we asked naive observers to answer whether the direction of the motion of the grating pattern was perceived as upward or downward while they were walking or standing on a treadmill. The frequency of the “downward” response was significantly higher under the walking condition. This effect reveals that treadmill locomotion captures perceived direction of ambiguous motion in accordance with the direction of the optic flow during natural walking. This finding suggests that the effect reflects a perceptual mechanism to compensate for the absence of inputs in the action–perception cycle during locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson SJ, Mullen KT, Hess RF (1991) Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J Physiol 442:47–64

    PubMed  CAS  Google Scholar 

  • Bardy BG, Warren WH Jr, Kay BA (1996) Motion parallax is used to control postural sway during walking. Exp Brain Res 111:271–282

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh P (1992) Attention-based motion perception. Science 257:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Crane B, Demer J (1997) Human gaze stabilization during natural activities: translation, rotation, magnification, and target distance effects. J Neurophysiol 78:2129–2144

    PubMed  CAS  Google Scholar 

  • Culham J, Cavanagh P (1994) Motion capture of luminance stimuli by equiluminous color gratings and by attentive tracking. Vis Res 34:2701–2706

    Article  PubMed  CAS  Google Scholar 

  • de Rugy A, Taga G, Montagne G, Buekers M, Laurent M (2002) Perception–action coupling model for human locomotor pointing. Biol Cybern 87:141–150

    Article  PubMed  Google Scholar 

  • Durgin F, Gigone K, Scott R (2005) Perception of visual speed while moving. J Exp Psychol Hum Percept Perform 31:339–353

    Article  PubMed  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Flückiger M, Baumberger B (1988) The perception of an optical flow projected on the ground surface. Perception 17:633–645

    Article  PubMed  Google Scholar 

  • Fujimoto K (2003) Motion induction from biological motion. Perception 32:1273–1277

    Article  PubMed  Google Scholar 

  • Fujimoto K, Sato T (2006) Backscroll illusion: apparent motion in the background of locomotive objects. Vis Res 46:14–25

    Article  PubMed  Google Scholar 

  • Gibson J (1954) The visual perception of objective motion and subjective movement. Psychol Rev 61:304–314

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Olkkonen M, Walter S, Gegenfurtner K (2006) Memory modulates color appearance. Nat Neurosci 9:1367–1368

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz H (1925) Helmholtz’s treatise on physiological optics translated from the third German edition, edited by James P. C. Southall, vol III [Electronic edition (2001): University of Pennsylvania URL: http://psych.upenn.edu/backuslab/helmholtz]. Optical Society of America

  • Ishimura G (1995) Visuomotor factors for action capture. Invest Ophthal Vis Sci (suppl) 36:S357

    Google Scholar 

  • Ishimura G, Shimojo S (1994) Voluntary action captures visual motion. Invest Ophthal Vis Sci (suppl) 35:1275

    Google Scholar 

  • Lee DN (1974) Visual information during locomotion. In: MacLeod RB, Pick HL Jr (eds) Perception: essays in honor of James J. Gibson. Cornell University Press, Ithaca/London, pp 250–267

  • Murakami I, Shimojo S (1993) Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes. Vis Res 33:2091–2107

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Shimojo S (1992) Experiencing and perceiving visual surfaces. Science 257:1357–1363

    Article  PubMed  CAS  Google Scholar 

  • Nawrot M, Sekuler R (1990) Assimilation and contrast in motion perception: explorations in cooperativity. Vis Res 30:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Ohtani Y, Ejima Y (1997) Anisotropy for direction discrimination in a two-frame apparent motion display. Vis Res 37:765–767

    Article  PubMed  CAS  Google Scholar 

  • Paffen CLE, van der Smagt MJ, te Pas SF, Verstraten FAJ (2005) Center-surround inhibition and facilitation as a function of size and contrast at multiple levels of visual motion processing. J Vis 5:571–578

    Article  PubMed  Google Scholar 

  • Patla AE (1997) Understanding the roles of vision in the control of human locomotion. Gait Posture 5:54–69

    Article  Google Scholar 

  • Pelah A, Barlow H (1996) Visual illusion from running. Nature 381:283

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS (1986) Capture of stereopsis and apparent motion by illusory contours. Perception & Psychophysics 39:361–373

    PubMed  CAS  Google Scholar 

  • Ramachandran VS (1987) Interaction between colour and motion in human vision. Nature 328:645–647

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS (1990) Interactions between motion, depth, color and form: the utilitarian theory of perception. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, pp 347–360

    Google Scholar 

  • Ramachandran VS, Anstis SM (1983) Displacement thresholds for coherent apparent motion in random dot-patterns. Vis Res 23:1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS, Anstis SM (1990) Illusory displacement of equiluminous kinetic edges. Perception 19:611–616

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS, Cavanagh P (1987) Motion capture anisotropy. Vis Res 27:97–106

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS, Inada V (1985) Spatial phase and frequency in motion capture of random-dot patterns. Spat Vis 1:57–67

    Article  PubMed  CAS  Google Scholar 

  • Tadin D, Lappin JS, Gilroy LA, Blake R (2003) Perceptual consequences of centre-surround antagonism in visual motion processing. Nature 424:312–315

    Article  PubMed  CAS  Google Scholar 

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78:9–17

    Article  PubMed  CAS  Google Scholar 

  • Verstraten F, Hooge I, Culham J, Van Wezel R (2001) Systematic eye movements do not account for the perception of motion during attentive tracking. Vis Res 41:3505–3511

    Article  PubMed  CAS  Google Scholar 

  • Wallach H (1987) Perceiving a stable environment when one moves. Annu Rev Psychol 38:1–27

    Article  PubMed  CAS  Google Scholar 

  • Warren WH, Kay BA, Yilmaz EH (1996) Visual control of posture during walking: functional specificity. J Exp Psychol Hum Percept Perform 22:818–838

    Article  PubMed  CAS  Google Scholar 

  • Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4:213–216

    Article  PubMed  CAS  Google Scholar 

  • Wohlschläger A (2000) Visual motion priming by invisible actions. Vis Res 40:925–930

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shinsuke Shimojo for many helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Yabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabe, Y., Taga, G. Treadmill locomotion captures visual perception of apparent motion. Exp Brain Res 191, 487–494 (2008). https://doi.org/10.1007/s00221-008-1541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1541-3

Keywords

Navigation