Skip to main content
Log in

The relative contributions of colour and luminance signals towards the visuomotor localisation of targets in human peripheral vision

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0–4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson SJ, Yamagishi N (2000) Spatial localization of colour and luminance stimuli in human peripheral vision. Vision Res 40:759–771

    Article  PubMed  CAS  Google Scholar 

  • Anstis S, Ramachandran VS (1995) At the edge of movement. In: Gregory R, Harris J, Heard P, Rose D (eds) The artful eye. Oxford University Press, Oxford, pp 232–248

    Google Scholar 

  • Ashida H (2004) Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42:1515–1524

    Article  PubMed  Google Scholar 

  • Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29:529–535

    Article  PubMed  CAS  Google Scholar 

  • Bruno N (2001) When does action resist visual illusions? Trends Cogn Sci 5:379–382

    Article  PubMed  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606

    Article  PubMed  Google Scholar 

  • Burr DC, Morrone MC, Ross J (2001) Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11:798–802

    Article  PubMed  CAS  Google Scholar 

  • Carey DP (2001) Do action systems resist visual illusions? Trends Cogn Sci 5:109–113

    Article  PubMed  Google Scholar 

  • Cavanagh P, Tyler CW, Favreau OE (1984) Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1:893–899

    PubMed  CAS  Google Scholar 

  • De Valois RL, De Valois KK (1991) Vernier acuity with stationary moving Gabors. Vision Res 31:1619–1626

    Article  PubMed  Google Scholar 

  • Dyde RT, Milner AD (2002) Two illusions of perceived orientation: one fools all of the people some of the time; the other fools all of the people all of the time. Exp Brain Res 144:518–527

    Article  PubMed  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  • Flitcroft DI (1989) The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry. Vision Res 29:349–360

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen RE, Bex PJ, Verstraten FA (1997) How big is a Gabor patch, and why should we care? J Opt Soc Am A 14:1–12

    Article  CAS  Google Scholar 

  • Gegenfurtner KR, Hawken MJ (1996) Interaction of motion and color in the visual pathways. Trends Neurosci 19:394–401

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Kiper DC (2003) Color vision. Annu Rev Neurosci 26:181–206

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Rieger J (2000) Sensory and cognitive contributions of color to the recognition of natural scenes. Curr Biol 10:805–808

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Eagleson R, Goodale MA (1999) The effects of delay on the kinematics of grasping. Exp Brain Res 126:109–116

    Article  PubMed  CAS  Google Scholar 

  • Kerzel D, Gegenfurtner KR (2005) Motion-induced illusory displacement reexamined: differences between perception and action? Exp Brain Res 162:191–201

    Article  PubMed  Google Scholar 

  • Kingdom FA (2003) Color brings relief to human vision. Nat Neurosci 6:641–644

    Article  PubMed  CAS  Google Scholar 

  • Kingdom FA, Beauce C, Hunter L (2004) Colour vision brings clarity to shadows. Perception 33:907–914

    Article  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  PubMed  Google Scholar 

  • Liu JV, Ashida H, Smith AT, Wandell BA (2006) Assessment of stimulus-induced changes in human v1 visual field maps. J Neurophysiol 96:3398–3408

    Article  PubMed  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    PubMed  CAS  Google Scholar 

  • Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    Article  PubMed  CAS  Google Scholar 

  • Milner D, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Mollon JD (1989) “Tho’ she kneel’d in that place where they grew...” The uses and origins of primate colour vision. J Exp Biol 146:21–38

    PubMed  CAS  Google Scholar 

  • Mollon JD (1991) Uses and evolutionary origins of primate colour vision. In: Cronly-Dillon JR, Gregory RL (eds) Evolution of the eye and visual system. Macmillan, London, pp 306–319

    Google Scholar 

  • Mullen KT, Yoshizawa T, Baker CL Jr (2003) Luminance mechanisms mediate the motion of red-green isoluminant gratings: the role of “temporal chromatic aberration”. Vision Res 43:1235–1247

    Article  PubMed  Google Scholar 

  • Nijhawan R (1994) Motion extrapolation in catching. Nature 370:256–257

    Article  PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B Biol Sci 263:593–599

    Article  CAS  Google Scholar 

  • Payton ME, Greenstone MH, Schenker N (2003) Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J Insect Sci 3:34 (6 pp) Epub: http://www.insectscience.org/3.34/

    Google Scholar 

  • Ramachandran VS, Anstis SM (1990) Illusory displacement of equiluminous kinetic edges. Perception 19:611–616

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1990) Functions of the colour-opponent and broad-band channels of the visual system. Nature 343:68–70

    Article  PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2000) Chromaticity as a signal of ripeness in fruits taken by primates. J Exp Biol 203:1987–2000

    PubMed  CAS  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189

    PubMed  CAS  Google Scholar 

  • Troscianko T, Fahle M (1988) Why do isoluminant stimuli appear slower? J Opt Soc Am A 5:871–880

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale] MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • White BJ, Kerzel D, Gegenfurtner KR (2006) Visually guided movements to color targets. Exp Brain Res 175:110–126

    Article  PubMed  Google Scholar 

  • Whitney D, Goltz HC, Thomas CG, Gati JS, Menon RS, Goodale MA (2003) Flexible retinotopy: motion-dependent position coding in the visual cortex. Science 302:878–881

    Article  PubMed  CAS  Google Scholar 

  • Willis A, Anderson SJ (1998) Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets. Proc R Soc Lond B Biol Sci 265:2435–2441

    Article  CAS  Google Scholar 

  • Willis A, Anderson SJ (2002) Colour and luminance interactions in the visual perception of motion. Proc R Soc Lond B Biol Sci 269:1011–1016

    Article  Google Scholar 

  • Yamagishi N, Anderson SJ, Ashida H (2001) Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268:973–977

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the 21st Century COE program (D-10 to Kyoto University), MEXT, Japan; NICT; and JSPS Grants-in-Aid for Scientific Research (17200019, 18203036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ashida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashida, H., Yamagishi, N. & Anderson, S.J. The relative contributions of colour and luminance signals towards the visuomotor localisation of targets in human peripheral vision. Exp Brain Res 183, 425–434 (2007). https://doi.org/10.1007/s00221-007-1059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1059-0

Keywords

Navigation