Skip to main content

Advertisement

Log in

Cue and reward signals carried by monkey entorhinal cortex neurons during reward schedules

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Ablation of entorhinal/perirhinal cortices prevents learning associations between visual stimuli used as cues in reward schedules and the schedule state. Single neurons in perirhinal cortex are sensitive to associations between the cues and the reward schedules. To investigate whether neurons in the entorhinal cortex have similar sensitivities, we recorded single neuronal activity from two rhesus monkeys while the monkeys performed a visually cued reward schedule task. When the cue was related to the reward schedules, the monkeys made progressively fewer errors as the schedule state became closer to the reward state, showing that the monkeys were sensitive to the cue and the schedule state. Of 75 neurons recorded in the entorhinal cortex during task performance, about 30% responded. About half of these responded after cue presentation. When the relation of the cue to the reward schedules was random, the cue-related responses disappeared or lost their selectivity for schedule states. The responses of the entorhinal cortex neurons are similar to responses of perirhinal cortex neurons in that they are selective for the associative relationships between cues and reward schedules. However, they are particularly selective for the first trial of a new schedule, in contrast to perirhinal cortex where responsivity to all schedule states is seen. A different subpopulation of entorhinal neurons responded to the reward, unlike perirhinal neurons which respond solely to the cue. These results indicate that the entorhinal signals carry associative relationships between the visual cues and reward schedules, and between rewards and reward schedules that are not simply derived from perirhinal cortex by feed-forward serial processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akil M, Lewis DA (1993) The dopaminergic innervation of monkey entorhinal cortex. Cereb Cortex 3:533–550

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurol 264:326–355

    Article  PubMed  CAS  Google Scholar 

  • Biella G, Uva L, de Curtis M (2002) Propagation of neuronal activity along the neocortical-perirhinal-entorhinal pathway in the guinea pig. J Neurosci 22:9972–9979

    PubMed  CAS  Google Scholar 

  • Bowman EM, Aigner TG, Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol 75:1061–1073

    PubMed  CAS  Google Scholar 

  • Buckmaster CA, Eichenbaum H, Amaral DG, Suzuki WA, Rapp PR (2004) Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J Neurosci 24:9811–9825

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ, Saksida LM (2005) Object memory and perception in the medial temporal lobe: an alternative approach. Curr Opin Neurobiol 15:730–737

    Article  PubMed  CAS  Google Scholar 

  • Charles DP, Browning PG, Gaffan D (2004) Entorhinal cortex contributes to object-in-place scene memory. Eur J Neurosci 20:3157–3164

    Article  PubMed  Google Scholar 

  • de Curtis M, Pare D (2004) The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol 74:101–110

    Article  PubMed  Google Scholar 

  • Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp Brain Res 96:457–472

    Article  PubMed  CAS  Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178

    Article  PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  CAS  Google Scholar 

  • Hays AV, Richmond BJ, Optican LMA (1982) Unix-based multiple process system for real-time data acquisition and control. WESCON Conf Proc 2:1–10

    Google Scholar 

  • Ihaka R, Gentleman RR (1996) R: a language for data analysis and graphics. Comput Graphical Stat 5:299–314

    Article  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987a) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    Article  CAS  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987b) The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol 264:396–408

    Article  CAS  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara R, Takashima I, Mimura Y, Witter MP, Iijima T (2003) Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. J Neurophysiol 89:2176–2184

    Article  PubMed  Google Scholar 

  • Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15:5637–5659

    PubMed  CAS  Google Scholar 

  • Liu Z, Richmond BJ (2000) Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J Neurophysiol 83:1677–1692

    PubMed  CAS  Google Scholar 

  • Liu Z, Murray EA, Richmond BJ (2000) Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nat Neurosci 3:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Richmond BJ, Murray EA, Saunders RC, Steenrod S, Stubblefield BK, Montague DM, Ginns EI (2004) DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc Natl Acad Sci USA 101:12336–12341

    Article  PubMed  CAS  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432

    PubMed  CAS  Google Scholar 

  • Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11:188–193

    Article  PubMed  CAS  Google Scholar 

  • Niki H, Sakai M, Kubota K (1972) Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res 38:343–353

    Article  PubMed  CAS  Google Scholar 

  • Nishijo H, Ono T, Nishino H (1988) Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J Neurosci 8:3570–3583

    PubMed  CAS  Google Scholar 

  • Paz R, Pelletier JG, Bauer EP, Pare D (2006) Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nat Neurosci 9:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Pelletier JG, Apergis J, Pare D (2004) Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. J Neurophysiol 91:2079–2089

    Article  PubMed  Google Scholar 

  • Pelletier JG, Apergis-Schoute J, Pare D (2005) Interaction between amygdala and neocortical inputs in the perirhinal cortex. J Neurophysiol 94:1837–1848

    Article  PubMed  Google Scholar 

  • Pinto A, Fuentes C, Pare D (2006) Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J Comp Neurol 495:722–734

    Article  PubMed  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr (1992) The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci 12:1945–1963

    PubMed  CAS  Google Scholar 

  • Ravel S, Richmond BJ (2006) Dopamine neuronal responses in monkeys performing visually cued reward schedules. Eur J Neurosci 24:277–290

    Article  PubMed  Google Scholar 

  • Riches IP, Wilson FA, Brown MW (1991) The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J Neurosci 11:1763–1779

    PubMed  CAS  Google Scholar 

  • Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol 57:132–146

    PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Rosenkilde CE, Bauer RH, Fuster JM (1981) Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res 209:375–394

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Johnston D (2006) Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 26:3229–3244

    Article  PubMed  CAS  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762

    Article  PubMed  CAS  Google Scholar 

  • Saunders RC, Rosene DL (1988) A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 271:153–184

    Article  PubMed  CAS  Google Scholar 

  • Saunders RC, Aigner TG, Frank JA (1990) Magnetic resonance imaging of the rhesus monkey brain: use for stereotactic neurosurgery. Exp Brain Res 81:443–446

    Article  PubMed  CAS  Google Scholar 

  • Shidara M, Richmond BJ (2002) Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296:1709–1711

    Article  PubMed  Google Scholar 

  • Shidara M, Aigner TG, Richmond BJ (1998) Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J Neurosci 18:2613–2625

    PubMed  CAS  Google Scholar 

  • Smith DM, Mizumori SJ (2006) Hippocampal place cells, context, and episodic memory. Hippocampus 16:716–729

    Article  PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  PubMed  CAS  Google Scholar 

  • Stefanacci L, Suzuki WA, Amaral DG (1996) Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375:552–582

    Article  PubMed  CAS  Google Scholar 

  • Sugase-Miyamoto Y, Richmond BJ (2005) Neuronal signals in the monkey basolateral amygdala during reward schedules. J Neurosci 25:11071–11083

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081

    PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000) Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 83:1864–1876

    PubMed  CAS  Google Scholar 

  • Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59

    Article  PubMed  Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Mental Health. We thank Dr R.C. Saunders for help with the MR imaging, and Dr M. Shidara for his comments on this manuscript. We gratefully acknowledge support for BJR in Japan from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugase-Miyamoto, Y., Richmond, B.J. Cue and reward signals carried by monkey entorhinal cortex neurons during reward schedules. Exp Brain Res 181, 267–276 (2007). https://doi.org/10.1007/s00221-007-0926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0926-z

Keywords

Navigation