Skip to main content
Log in

Response selection in schizophrenia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Schizophrenia patients tend to have longer and more variable latencies of response than healthy control subjects. However, the distributions of data from the two groups overlap to a large extent. Therefore, we investigated (1) whether the process of response selection in schizophrenia patients is like that of slow control subjects or has different properties, and (2) whether the intra-individual variability of schizophrenia patients is intrinsically greater than that of control subjects or reflects their longer mean latency. To answer these questions we tested schizophrenia patients and healthy control subjects in a choice reaction time (RT) task with 2-choice and 4-choice conditions. We analyzed how mean RT in the 2-choice condition predicted mean RT in the 4-choice condition and found that the relation was significantly different between the two groups. In contrast, the intra-individual variability of RT was related to mean RT in the same way for schizophrenia patients and control subjects. These results indicate that the response selection process of schizophrenia patients was not simply a slower version of the same process engaged by control subjects, but it was a selection process with different dynamic properties. In contrast, schizophrenia patients did not have a greater intrinsic variability than control subjects. Furthermore, we found that the difference Δt between RT measured in the 4-choice condition and RT predicted for the control group in the same condition could be used to discriminate effectively patients and control subjects. However, there was no significant association between Δt and clinical variables. These results suggest that Δt could reflect a trait impairment of schizophrenia independent from symptom profile. Finally, we suggest that the impairment of the process of selection of the motor response in schizophrenia reflects the alteration of the time-dependent patterns of neural activity that result from anomalies in the connectivity of the brain areas engaged for the selection of the motor response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreasen NC (1983) Scale for the assessment of negative symptoms (SANS). University of Iowa Press, Iowa City

    Google Scholar 

  • Andreasen NC (1984) Scale for the assessment of positive symptoms (SAPS). University of Iowa Press, Iowa City

    Google Scholar 

  • Andreasen NC, Arndt S, Alliger R, Miller D, Flaum M (1995) Symptoms of schizophrenia. Methods, meanings, and mechanisms. Arch Gen Psychiatry 52:341–351

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Paradiso S, O’Leary DS (1998) ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24:203–218

    PubMed  CAS  Google Scholar 

  • Basso MA, Wurtz RH (1997) Modulation of neuronal activity by target uncertainty. Nature 389:66–69

    Article  PubMed  CAS  Google Scholar 

  • Braff DL (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–259

    PubMed  CAS  Google Scholar 

  • Bredgaard R, Glenthøj BY (2000) Information processing and attentional dysfunctions as vulnerability indicators in schizophrenia spectrum disorders. World J Biol Psychiatry 1:5–15

    Article  PubMed  CAS  Google Scholar 

  • Cadenhead KS, Geyer MA, Butler W, Perry W, Sprock J, Braff DL (1997) Information processing deficits of schizophrenia patients: relationship to clinical ratings, gender and medication status. Schizophr Res 28:51–62

    Article  PubMed  CAS  Google Scholar 

  • Cannon TD, Huttunen MO, Lonnqvist J, Tuulio-Henrikson A, Pirkola T, Glahn D, Finkelstein J, Hietanen M, Kaprio J, Koskenvuo M (2000) The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 67:369–382

    Article  PubMed  CAS  Google Scholar 

  • Cavina-Pratesi C, Valyear KF, Culham JC, Köhler S, Obhi S, Marzi CA, Goodale M (2006) Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period; evidence from event-related functional magnetic resonance imaging. J Neurosci 26:2704–2713

    Article  PubMed  CAS  Google Scholar 

  • Crawford JR, Besson JA, Bremner M, Ebmeier KP, Cochrane RH, Kirkwood K (1992) Estimation of premorbid intelligence in schizophrenia. Br J Psychiatry 161:69–74

    PubMed  CAS  Google Scholar 

  • Dassonville P, Lewis SM, Zhu X-H, Ugurbil K, Kim SG, Ashe J (2001) The effect of stimulus-response compatibility on cortical motor activation. Neuroimage 13:1–14

    Article  PubMed  CAS  Google Scholar 

  • Erlhagen W, Schöner G (2002) Dynamic field theory of movement preparation. Psychol Rev 109:545–572

    Article  PubMed  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P). Biometrics Research, New York State Psychiatric Institute, New York

  • Fleck DE, Sax KW, Strakowski MS (2001) Reaction time measures of sustained attention differentiate bipolar disorder from schizophrenia. Schizophr Res 52:251–259

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125

    Article  PubMed  CAS  Google Scholar 

  • Fuller RL, Luck SJ, Braun EL, Robinson BM, McMahon RP, Gold JM (2006) Impaired control of visual attention in schizophrenia. J Abnorm Psychol 115:266–275

    Article  PubMed  Google Scholar 

  • Gale HJ, Holzman PS (2000) A new look at reaction time in schizophrenia. Schizophr Res 46:149–165

    Article  PubMed  CAS  Google Scholar 

  • Goldberg TE, Gold JM (1995) Neurocognitive functioning in patients with schizophrenia. An overview. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology—The fourth generation of progress. Raven Press, New York, pp 1245–1257

    Google Scholar 

  • Hemsley DR (1976) Attention and information processing in schizophrenia. Br J Soc Clin Psychol 15:199–209

    PubMed  CAS  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  • Kanaan RAA, Kim J-S, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK (2005) Diffusion tensor imaging in schizophrenia. Biol Psychiatry 58:921–929

    Article  PubMed  Google Scholar 

  • Krieger S, Lis S, Cetin T, Gallhofer B, Meyer-Lindenberg A (2005) Executive function and cognitive subprocesses in first-episode, drug-naïve schizophrenia: an analysis of N-back performance. Am J Psychiatry 162:1206–1208

    Article  PubMed  Google Scholar 

  • Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41:15–30

    Article  PubMed  Google Scholar 

  • Laurent A, Biloa-Tang M, Bougerol T, Duly D, Anchisi AM, Bosson JL, Pellat J, d’Amato T, Dalery J (2000) Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives. Schizophr Res 46:269–283

    Article  PubMed  CAS  Google Scholar 

  • Lee D (2006) Neural basis of quasi-rational decision making. Curr Opin Neurobiol 16:191–198

    Article  PubMed  CAS  Google Scholar 

  • Luce RD (1986) Response times. Their role in inferring elementary mental organization. Oxford Science Publications, New York

    Google Scholar 

  • Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 21:1174–1181

    Article  PubMed  Google Scholar 

  • Malla AK, Norman RM, Aguilar O, Carnahan H, Cortese L (1995) Relationship between movement planning and psychopathology profiles in schizophrenia. Br J Psychiatry 167:211–215

    Article  PubMed  CAS  Google Scholar 

  • Milner AD (1986) Chronometric analysis in neuropsychology. Neuropsychologia 24:115–128

    Article  PubMed  CAS  Google Scholar 

  • Nelson HE, Willison JR (1991) National adult reading test, 2nd edn. NFER-Nelson, Windsor

    Google Scholar 

  • Ngan ET, Liddle PF (2000) Reaction time, symptom profiles and course of illness in schizophrenia. Schizophr Res 46:195–201

    Article  PubMed  CAS  Google Scholar 

  • Nuechterlein KH (1977) Reaction time and attention in schizophrenia: a critical evaluation of the data and theories. Schizophr Bull 3:373–428

    PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Pellizzer G, Georgopoulos AP (1993) Common processing constraints for visuomotor and visual mental rotations. Exp Brain Res 93:165–172

    Article  PubMed  CAS  Google Scholar 

  • Pellizzer G, Hedges JH (2003) Motor planning: effect of directional uncertainty with discrete spatial cues. Exp Brain Res 150:276–289

    PubMed  Google Scholar 

  • Pellizzer G, Hedges JH (2004) Motor planning: effect of directional uncertainty with continuous spatial cues. Exp Brain Res 154:121–126

    Article  PubMed  Google Scholar 

  • Posada A, Franck N (2002) Use and automation of a rule in schizophrenia. Psychiatry Res 109:289–296

    Article  PubMed  Google Scholar 

  • Ratcliff R (1993) Methods for dealing with reaction time outliers. Psychol Bull 114:510–532

    Article  PubMed  CAS  Google Scholar 

  • Schatz J (1998) Cognitive processing efficiency in schizophrenia: generalized vs domain specific deficits. Schizophr Res 30:41–49

    Article  PubMed  CAS  Google Scholar 

  • Schreiber H, Stolz-Born G, Heinrich H, Kornhuber HH, Born J (1992) Attention, cognition, and motor perseveration in adolescents at genetic risk for schizophrenia and control subjects. Psychiatry Res 44:125–140

    Article  PubMed  CAS  Google Scholar 

  • Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15:1111–1121

    Article  PubMed  Google Scholar 

  • Schwartz F, Carr AC, Munich RL, Glauber S, Lesser B, Murray J (1989) Reaction time impairment in schizophrenia and affective illness: the role of attention. Biol Psychiatry 25:540–548

    Article  PubMed  CAS  Google Scholar 

  • Schwartz F, Munich RL, Carr A, Bartuch E, Lesser B, Rescigno D, Viegener B (1991) Negative symptoms and reaction time in schizophrenia. J Psychiatr Res 25:131–140

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Van Manen KJ, Turner WM, Gamser DM, Faraone SV, Goldstein JM, Tsuang MT (1998) The effect of increasing resource demand on vigilance in adults with schizophrenia or developmental attentional/learning disorders: a preliminary study. Schizophr Res 34:101–112

    Article  PubMed  CAS  Google Scholar 

  • Shakow D (1963) Psychological deficit in schizophrenia. Behav Sci 4:275–305

    Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames

    Google Scholar 

  • Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Hevelone ND, Rosas D (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102:12212–12217

    Article  PubMed  CAS  Google Scholar 

  • Van Kammen D, Marder S (1995) Dopamine receptor antagonists. In: Kaplan H, Sadock B (eds) Comprehensive text book of psychiatry. Williams & Wilkins, Baltimore, pp 1987–2022

    Google Scholar 

  • Vinogradov S, Poole JH, Willis-Shore J, Ober BA, Shenaut GK (1998) Slower and more variable reaction times in schizophrenia: what do they signify? Schizophr Res 32:183–190

    Article  PubMed  CAS  Google Scholar 

  • Walker E, Shaye J (1982) Familial schizophrenia. A predictor of neuromotor and attentional abnormalities in schizophrenia. Arch Gen Psychiatry 39:1153–1156

    PubMed  CAS  Google Scholar 

  • Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64:663–667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Medical Research Service Merit Review Award from the Office of Research and Development of the US Department of Veterans Affairs (G.P.), by an Advanced Research Career Development Award from the US Department of Veterans Affairs (M.S.) and by a Grant-in-Aid from the University of Minnesota (M.S. and G.P.). The authors thank Kate McClannahan for participating in the collection of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pellizzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellizzer, G., Stephane, M. Response selection in schizophrenia. Exp Brain Res 180, 705–714 (2007). https://doi.org/10.1007/s00221-007-0892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0892-5

Keywords

Navigation