Skip to main content

Advertisement

Log in

Activation of α2-adrenoreceptors suppresses the excitability of C1 spinal neurons having convergent inputs from tooth pulp and superior sagittal sinus in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to test the hypothesis that activation of α2-adrenoreceptors modulates the excitability of C1 neurons having convergent inputs from both the tooth pulp (TP) and the superior sagittal sinus (SSS), by using the microiontophoretic techniques of drug application and immunohistochemical approaches. Extracellular single-unit recordings were made from 38 C1 neurons responding to electrical stimulation of TP under pentobarbital-anesthetized rats. Seventy-one percent of C1 neurons (27/38) that responded to TP stimulation also responded to electrical stimulation of the SSS. In these neurons, l-glutamate-evoked C1 neuronal discharge firings were increased in a dose-dependent manner. The mean glutamate-evoked firing rates were dose-dependently inhibited after microiontophoretic application of clonidine (α2-adrenoreceptor/imidazoline I1 receptor agonist). The inhibition of glutamate-evoked C1 mean firings by clonidine was antagonized by the co-application of idazoxan (α2-adrenoreceptor/imidazoline I2 receptor antagonist), yohimbine (α2-adrenoreceptor) but not the α1-adrenoreceptor antagonist, prazosin with affinity for α2B- and α2C-adrenoreceptors. The mean spontaneous discharge frequencies were significantly inhibited by the microiontophoretic application of clonidine and this inhibition was reversed by the co-application of idazoxan, yohimbine. Microiontophoresis of clonidine also resulted in a reduction of TP-/SSS-evoked activity and this effect was reversed by the co-application of yohimbine. Immunoreactivity for α2A-adrenoreceptor was found in the superficial layers of I–III in the C1 region. These results suggest that α2-adrenoreceptor agonist clonidine inhibits the excitability of C1 neurons having convergent inputs from TP and SSS afferents, and that the activation of α2A-adrenoreceptors onto C1 dorsal horn neurons may contribute as a useful therapeutic target for the alleviation of trigeminal referred pain associated with migraine and tooth pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andres KH, Von During M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301

    Article  PubMed  CAS  Google Scholar 

  • Angus-Leppan H, Olausson B, Boers P, Lambert GA (1994) Convergence of afferents from superior sagittal sinus and tooth pulp on cells in the upper cervical spinal cord of the cat. Neurosci Lett 182:275–278

    Article  PubMed  CAS  Google Scholar 

  • Anthony M, Lance JW, Somerville B (1972) A comparative trial of pindolol, clonidine and carbamazepine in the interval therapy of migraine. Med J Aust 1:1343–1346

    PubMed  CAS  Google Scholar 

  • Arvidsson J, Rappana P (1989) An HRP study central projections from primary sensory neurons innervating the rat masseter muscle. Brain Res 480:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bereiter DA, Bereiter DF (2000) Morphine and NMDA receptor antagonism reduce c-fos expression in spinal trigeminal nucleus produced by acute injury to TMJ region. Pain 85:65–77

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW (1992) Pharmacological characteristics of alpha2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol 42:1–5

    PubMed  CAS  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Lanzer SZ, Lefkowitz RJ, Menneman KP, Molinoff PB, Buffolo RR Jr, Trendelenburg U (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    PubMed  CAS  Google Scholar 

  • Cox DH, Dunlap K (1992) Pharmacological discrimination of N-type from L-type calcium current and its selective modulation by transmitters. J Neurosci 12:906–914

    PubMed  CAS  Google Scholar 

  • Davis KD, Treede RD, Raja SN, Meyer RA, Campbell JN (1991) Topical application of clonidine relieves hyperalgesia in patients with sympathetically maintained pain. Pain 47:309–317

    Article  PubMed  CAS  Google Scholar 

  • Denaro A, Martucci NA, Ruggieri S, Manna V, Agnoli A (1985) Headache and noradrenergic involvement: the effects of alpha 2 stimulants and alpha 2-antagonists. Acta Psychiatr Scand 320:20–25

    Article  CAS  Google Scholar 

  • Diaz A, Mayet S, Dickenson AH (1997) BU-224 produces spinal antinociception as an agonist at imidazoline I2 receptors. Eur J Pharmacol 333:9–15

    Article  PubMed  CAS  Google Scholar 

  • Feindel W, Penfield W, Mcnaughton F (1960) The tentorial nerves and localization of intracranial pain in man. Neurolology 10:555–563

    CAS  Google Scholar 

  • Foreman RD (2000) Integration of viscerosomatic sensory inputs at the spinal level. Prog Brain Res 122:209–221

    PubMed  CAS  Google Scholar 

  • Glynn CJ, Jamous MA, Teddy PJ (1992) Cerebrospinal fluid kinetics of epidural clonidine in man. Pain 49:361–367

    Article  PubMed  CAS  Google Scholar 

  • Grudt TJ, Williams JT, Travagli RA (1985) Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus. J Physiol (Lond) 485:113–120

    Google Scholar 

  • Hayes AG, Skingle M, Tyers MB (1986) Alpha-adrenoreceptor-mediated antinociception and sedation in the rat and dog. Neuropharmacology 25:391–396

    Article  PubMed  CAS  Google Scholar 

  • Hoskin KL, Kaube H, Goadsby PJ (1996) Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-fos and electrophysiological study. Brain 119:249–256

    Google Scholar 

  • Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88:381–394

    Article  PubMed  CAS  Google Scholar 

  • Kallaranta T, Hakkarainen H, Hokkanen E, Tuevinen T (1977) Clonidine in migraine prophlaxis. Headache 17:169–172

    Article  PubMed  Google Scholar 

  • Kaube H, Keay KA, Hoskins KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629:95–102

    Article  PubMed  CAS  Google Scholar 

  • Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rats dura matter. J Comp Neurol 309:515–534

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of neurotransmitter release. Annu Rev Neurosci 22:443–485

    Article  PubMed  CAS  Google Scholar 

  • Marfurt CF, Turner DF (1984) The central projections of tooth pulp afferent neurons in the rat as determined by the transganglionic transport of horseradish peroxidase. J Comp Neurol 223:535–547

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Takeda M, Tanimoto T (1999) Effects of electrical stimulation of the tooth pulp and phrenic nerve fiberson the C1 spinal neurons in the rats. Exp Brain Res 126:351–358

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Ernsberger P (1992) Keeping an eye on I-site: imidazoline-preferring receptors. Trends Pharmacol Sci 13:369–370

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Brodde OE, Schnepel B, Beharendt J, Tschada R, Motulsky HJ, Insel PA (1989) [3H]-Idazoxan and some other α2-adrenergic drugs also bind with high affinity to a nonadrenergic site. Mol Pharmacol 35:324–330

    PubMed  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 663:355–474

    Article  Google Scholar 

  • Millar J, Williams G (1989) Effects of iontophoresis of noradrenaline and stimulation of the periaqueductal gray on single-unit activity in the rat superficial dorsal horn. J Comp Neurol 287:119–133

    Article  PubMed  CAS  Google Scholar 

  • Millar J, O’Brien FE, Williams G, Wood J (1993) The effects of iontophoretic clonidine on neurons in the rat superficial dorsal horn. Pain 53:137–145

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Mokha SS (2004) Estrogen attenuates antinociception produced by stimulation of the Kölliker–Fuse nucleus in the rats. Eur J Neurosci 20:3203–3207

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Takeda M, Tanimoto T, Matsumoto S (2004) Convergence of nociceptive information from temporomandibular joint and tooth pulp afferents on C1 spinal neurons in the rat. Life Sci 75:1465–1478

    Article  PubMed  CAS  Google Scholar 

  • North RA, Yoshimura M (1984) The actions of noradrenaline on neurons of the rat substantia gelatinosa in vitro. J Physiol (Lond) 349:43–55

    CAS  Google Scholar 

  • Olave MJ, Maxwell DJ (2003) Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess α2C-adrenergic receptors. J Neurosci 23:6837–6846

    PubMed  CAS  Google Scholar 

  • Peng YB, Lin Q, Willis WD (1996) Involvement of alpha-2 adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. J Pharmacol Exp Ther 278:125–135

    PubMed  CAS  Google Scholar 

  • Roudet C, Mouchet P, Feuerstein C, Savasta M (1994) Normal distribution of alpha 2-adrenoreceptors in the rat spinal cord and its modification after noradrenergic denervation: a quatitative autographic study. J Neurosci Res 39:319–329

    Article  PubMed  CAS  Google Scholar 

  • Storer RJ, Goadsby PJ (1999) Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience 90:1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Sullivan AF, Dashwood MR, Dickenson AH (1987) α2-adrenoreceptor modulation of nocicception in rat spinal cord: location, effects and interaction with morphine. Eur J Pharmacol 138:169–177

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Matsumoto S (1999) Effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on the tooth pulp-evoked C1 neurons in the rat. Exp Brain Res 128:303–308

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Matsumoto S (2000) Change in mechanical receptive field properties induced by GABAA receptor activation in the trigeminal spinal nucleus caudalis neurons in rats. Exp Brain Res 134:409–416

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Ikeda M, Tanimoto T, Lipski J, Matsumoto S (2002) Changes of the excitability of rat trigeminal root ganglion neurons evoked by α2-adrenoreceptors. Neuroscience 115:731–741

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Ikeda M, Kadoi J, Nasu M, Matsumoto S (2004) Opioidergic modulation of excitability of rat trigeminal root ganglion neurons projections to superficial layer of cervical dorsal horn. Neuroscience 125:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Ito M, Nasu M, Matsumoto S (2005a) Role of capsaicin sensitive primary afferent fiber input from masseter muscle into C1 spinal neuron responding to tooth-pulp stimulation in rats. Exp Brain Res 160:107–117

    Article  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Ikeda M, Nasu M, Kadoi J, Shima Y, Ohta H, Matsumoto S (2005b) Temporomandibular joint inflammation potentiates the excitability of trigeminal root ganglion neurons innervating facial skin in rats. J Neurophysiol 93:2723–2738

    Article  Google Scholar 

  • Takeda M, Tanimoto T, Ikeda M, Kadoi J, Nasu M, Matsumoto S (2005c) Activation of NK1 receptor of trigeminal root ganglion via substance P paracrine mechanism contribute to the mechanical allodynia in temporomandibular joint inflammation in rats. Pain 116:375–385

    Article  CAS  Google Scholar 

  • Tanimoto T, Takeda M, Matsumoto S (2002) Suppressive effect of vagal afferents on cervical dorsal horn neurons responding to tooth-pulp electrical stimulation in the rats. Exp Brain Res 145:468–479

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto T, Takeda M, Nishikawa T, Matsumoto S (2004) The role of 5-hydroxytryptamine 3 receptors in the vagal afferent activation-induced inhibition of the first cervical dorsal horn spinal neurons projected from tooth pulp in the rat. J Pharmacol Exp Ther 311:803–810

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto T, Takeda M, Nasu M, Kadoi J, Matsumoto S (2005) Immunohistochemical co-expression of carbonic anhydrase II with Kv1.4 and TRPV in rat small diameter trigeminal root ganglion neurons. Brain Res 1044:262–265

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of α2-agonist binding sites in the rat and human central nervous system: analysis of functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 319:69–101

    PubMed  CAS  Google Scholar 

  • Wang X-M, Zhang Z-J, Bains R, Mokha SS (2002) Effect of antisense knock-down α2A- and α2C-adrenoceptorrs on the antinociceptive action of clonidine on the trigeminal nociception in the rat. Pain 98:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wu L-G, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. TINS 20:204–212

    PubMed  CAS  Google Scholar 

  • Yeomans DC, Proudfit HK (1992) Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat. Neuroscience 49:681–691

    Article  PubMed  CAS  Google Scholar 

  • Zhang K-M, Wang X-M, Peterson AM, Chen W-Y, Mokha SS (1998) α2-adrenoceptors modulate NMDA-evoked responses of neurons in superficial and deeper dorsal horn of the medulla. J Neurophysiol 80:2210–2214

    PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, M., Tanimoto, T., Takahashi, M. et al. Activation of α2-adrenoreceptors suppresses the excitability of C1 spinal neurons having convergent inputs from tooth pulp and superior sagittal sinus in rats. Exp Brain Res 174, 210–220 (2006). https://doi.org/10.1007/s00221-006-0442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0442-6

Keywords

Navigation