Skip to main content
Log in

Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this study we investigated the effect of the directional congruency of tactile, visual, or bimodal visuotactile apparent motion distractors on the perception of auditory apparent motion. Participants had to judge the direction in which an auditory apparent motion stream moved (left-to-right or right-to-left) while trying to ignore one of a range of distractor stimuli, including unimodal tactile or visual, bimodal visuotactile, and crossmodal (i.e., composed of one visual and one tactile stimulus) distractors. Significant crossmodal dynamic capture effects (i.e., better performance when the target and distractor stimuli moved in the same direction rather than in opposite directions) were demonstrated in all conditions. Bimodal distractors elicited more crossmodal dynamic capture than unimodal distractors, thus providing the first empirical demonstration of the effect of information presented simultaneously in two irrelevant sensory modalities on the perception of motion in a third (target) sensory modality. The results of a second experiment demonstrated that the capture effect reported in the crossmodal distractor condition was most probably attributable to the combined effect of the individual static distractors (i.e., to ventriloquism) rather than to any emergent property of crossmodal apparent motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Interestingly, although the perception of apparent motion within individual sensory modalities has been widely explored in the years following Wertheimer’s (1912) seminal study, far more controversy surrounds the potential existence of crossmodal (or intermodal, using Allen and Kolers’ 1981 terminology) apparent motion. The idea is that when two stationary stimuli are presented in different sensory modalities from different spatial locations at the appropriate interstimulus interval, people might experience some form of apparent motion between them (Allen and Kolers 1981; Galli 1932; Zapparoli and Reatto 1969). Although early research supported the existence of the experience of such crossmodal motion between all possible combination of auditory, visual and tactile stimuli (Galli 1932; Zapparoli and Reatto 1969), results from subsequent research, using more robust psychophysical paradigms, have been used to argue against the very existence of the phenomenon (Allen and Kolers 1981).

References

  • Alais D, Burr D (2004a) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  PubMed  Google Scholar 

  • Alais D, Burr D (2004b) No direction-specific bimodal facilitation for audiovisual motion detection. Cogn Brain Res 19:185–194

    Article  Google Scholar 

  • Allen P, Kolers P (1981) Sensory specificity of apparent motion. J Exp Psychol 7:1318–1326

    Google Scholar 

  • Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am 20:1391–1397

    Google Scholar 

  • Bertelson P (1999) Ventriloquism: a case of crossmodal perceptual grouping. In: Aschersleben G, Bachmann T, Musseler J (eds) Cognitive contributions to the perception of spatial and temporal events. Elsevier Science, B. V, Amsterdam, pp 347–362

    Google Scholar 

  • Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory location. Psychon Bull Rev 5:482–489

    Google Scholar 

  • Bertelson P, de Gelder B (2003) Multisensory integration, perception, and ecological validity. Trends Cogn Sci 7:460–467

    Article  PubMed  Google Scholar 

  • Bertelson P, de Gelder B (2004) The psychology of multimodal perception. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 141–179

    Google Scholar 

  • Bonferroni CE (1936) Teoria statistica delle classie e calcolo delle probabilità. Pubblicazioni del Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Kubischik M, Hoffman K–P, Zilles K, Fink GR (2001a) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron T29:T287–296

    Article  Google Scholar 

  • Bremmer F, Schlack A, Duhamel JR, Graf W, Fink GR (2001b) Space coding in primate parietal cortex. Neuroimage T14:T46–51

    Article  Google Scholar 

  • Bushara KO, Hanakawa T, Immish I, Toma K, Kansaku K, Hallett M (2003) Neural correlates of cross model binding. Nat Neurosci 5:190–195

    Article  Google Scholar 

  • Caclin A, Soto-Faraco S, Kingstone A, Spence C (2002) Tactile ‘capture’ of audition. Percept Psychophys 64:616–630

    PubMed  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cort 11:1110–1123

    Article  Google Scholar 

  • Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10:649–657

    Article  PubMed  Google Scholar 

  • Calvert GA, Spence C, Stein BE (2004) The handbook of multisensory processes. MIT Press, Cambridge MA, USA

    Google Scholar 

  • Connor S (2000) Dumbstruck: a cultural history of ventriloquism. Oxford University Press, Oxford, USA

    Google Scholar 

  • Driver J, Spence C (2000) Multisensory perception: beyond modularity and convergence. Curr Biol 10:311–331

    Article  PubMed  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  Google Scholar 

  • Ernst MO, Bulthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Galli PA (1932) Über mittlest verschiedenen sinnesreizen erweckte wahrnehmung von scheinbewegung. [Perception of apparent motion elicited by different sensory stimuli]. Archiv für die gesamte Psychologie 85:137–180

    Google Scholar 

  • Godfroy M, Roumes C, Dauchy P (2003) Spatial variations of visual-auditory fusion areas. Perception 32:1233–1245

    Article  PubMed  Google Scholar 

  • Gondan M, Röder B (2004) Testing trisensory interactions. Percep Psychophys (submitted)

  • Graziano M, Gross CG (1995) The representation of extrapersonal space: a possible role for bimodal, visual-tactile neurons. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge MA, USA, pp 1021–1034

    Google Scholar 

  • Guest S, Spence C (2003) What role does multisensory integration play in the visuotactile perception of texture?. Int J Psychophysiol 30:63–80

    Article  Google Scholar 

  • Hagen MC, Franzen S, McGlone F, Essick G, Dancer G, Pardo JV (2002) Tactic motion acitivates the human MTN5 complex. Eur J Neurosci 16:957–964

    Article  PubMed  Google Scholar 

  • Heron J, Whitaker D, McGraw PV (2004) Sensory uncertainty governs the extent of audiovisual interaction. Vis Res 44:2875–2884

    Article  PubMed  Google Scholar 

  • Hofbauer M, Wuerger SM, Meyer GF, Roehrbein F, Schill K, Zetzsche C (2004) Catching audio-visual mice: predicting the arrival time of auditory-visual motion signals. Cogn Affect Behav Neurosci 4:241–250

    PubMed  Google Scholar 

  • Howard IP, Templetau WB (1966) Human spatial orientation. Wiley, Oxford

    Google Scholar 

  • Hsu JC (1996) Multiple comparision theory and methods. Chapman and Hall, London

    Google Scholar 

  • Kitagawa N, Ichihara S (2002) Hearing visual motion in depth. Nature 416:172–174

    Article  PubMed  Google Scholar 

  • Lakatos S, Shepard RN (1997) Constraints common to apparent motion in visual, tactile, and auditory space. J Exp Psychol Hum Percep Perform 23:1050–1060

    Article  Google Scholar 

  • Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10:873–888

    Article  Google Scholar 

  • Macaluso E, George N, Dolan R, Spence C, Driver J (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732

    Article  PubMed  Google Scholar 

  • Meredith AM (2002) On the neural basis for multisensory convergence: a brief review. Cogn Brain Res 14:31–40

    Article  Google Scholar 

  • Meredith AM, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857

    PubMed  Google Scholar 

  • Meyer GF, Wuerger SM (2001) Cross-modal integration of auditory and visual motion signals. Neuroreport 12:2557–2560

    Article  PubMed  Google Scholar 

  • Meyer GF, Wuerger SM, Röhrbein F, Zerzsche C (2005) Low-level integration of auditory and visual motion signals requires spatial co-localisation. Exp Brain Res (this issue)

  • Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279

    Article  Google Scholar 

  • Mordkoff TJ, Egeth HE (1993) Response time and accuracy revisited: converging support for the interactive race model. J Exp Psychol Hum Percep Perform 19:981–991

    Article  Google Scholar 

  • Mordkoff TJ, Yantis S (1991) An interactive race model of divided attention. J Exp Psychol Hum Percep Perform 17:520–538

    Article  Google Scholar 

  • Mulligan RM, Shaw ML (1980) Multimodal signal detection: independent decisions versus integration. Percep Psychophys 28:471–478

    Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Shroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15:963–974

    Article  PubMed  Google Scholar 

  • Pallier C, Dupoux E, Jeanin X (1997) EXPE: an expandable programming language for psychological experiments. Behav Res Methods Instrum Comput T29:T322–T327

    Google Scholar 

  • Ricciardi E, Vanello N, Dente D, Sgambelluri N, Scilingo EP, Gentili C, Sani L, Positano V, Santarelli FM, Guazzelli M, Haxby JV, Landini L, Bicchi A, Pietrini P (2004) Perception of visual and tactile flow activates common cortical areas in the human brain. In: Proceedings of EuroHaptics 2004, Munich, Germany, 5–7th June 2004, pp 290–292

  • Sanabria D, Soto-Faraco S, Chan J, Spence C (2004) When does intramodal perceptual grouping affect multisensory integration? Cogn Affect Behav Neurosci 4:218–229

    PubMed  Google Scholar 

  • Sanabria D, Soto-Faraco S, Chan J, Spence C (2005a) Intramodal perceptual grouping modulates multisensory integration: evidence from the crossmodal dynamic capture task. Neurosci Lett 377:9–64

    Article  Google Scholar 

  • Sanabria D, Soto-Faraco S, Spence C (2005b) Spatiotemporal interactions between audition and touch depend on hand posture. Exp Brain Res. DOI: 10.1007/s00221-005-2377-5

  • Sherrick CE, Rogers R (1996) Apparent haptic movement. Percept Psychophys 1:175–180

    Google Scholar 

  • Soto-Faraco S, Lyons J, Gazzaniga M, Spence C, Kingstone A (2002) The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Cogn Brain Res 14:139–146

    Article  Google Scholar 

  • Soto-Faraco S, Kingstone A, Spence C (2003) Multisensory contributions to the perception of motion. Neuropsychologia 41:1847–1862

    Article  PubMed  Google Scholar 

  • Soto-Faraco S, Spence C, Kingstone A (2004) Crossmodal dynamic capture: congruency effects of motion perception across sensory modalities. J Exp Psychol Hum Percep Perform 30:330–345

    Article  Google Scholar 

  • Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:519–521

    Article  Google Scholar 

  • Stein BE, Meredith AM (1993) The merging of the senses. MIT Press, Cambridge MA, USA

    Google Scholar 

  • Strybel TZ, Vatakis A (2005) A comparison of auditory and visual apparent motion presented individually and with crossmodal moving distractors. Perception 33:1033–1048

    Article  Google Scholar 

  • Welch RB, Warren DH (1980) Immediate perceptual response to intersensory discrepancy. Psychol Bull 88:638–667

    Article  PubMed  Google Scholar 

  • Welch RB, DuttonHurt LD, Warren DH (1986) Contributions of audition and vision to temporal rate perception. Percept Psychophys 39:294–300

    PubMed  Google Scholar 

  • Vroomen J, de Gelder B (2003) Visual motion influences the contingent auditory motion aftereffect. Psychol Sci 14:357–361

    Article  PubMed  Google Scholar 

  • Wuerger SM, Hofbauer M, Meyer GF (2003) The integration of auditory and visual motion signals at threshold. Percept Psychophys 65:1188–1196

    PubMed  Google Scholar 

  • Zapparoli GC, Reatto LL (1969) The apparent movement between visual and acoustic stimulus and the problem of intermodal relations. Acta Psychol 29:256–267

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Network Grant from the McDonnell-Pew Centre for Cognitive Neuroscience in Oxford to Salvador Soto-Faraco and Charles Spence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sanabria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanabria, D., Soto-Faraco, S. & Spence, C. Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion. Exp Brain Res 166, 548–558 (2005). https://doi.org/10.1007/s00221-005-2395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2395-6

Keywords

Navigation