Skip to main content
Log in

Cortical afferents to the smooth-pursuit region of the macaque monkey’s frontal eye field

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In primates, the frontal eye field (FEF) contains separate representations of saccadic and smooth-pursuit eye movements. The smooth-pursuit region (FEFsem) in macaque monkeys lies principally in the fundus and deep posterior wall of the arcuate sulcus, between the FEF saccade region (FEFsac) in the anterior wall and somatomotor areas on the posterior wall and convexity. In this study, cortical afferents to FEFsem were mapped by injecting retrograde tracers (WGA-HRP and fast blue) into electrophysiologically identified FEFsem sites in two monkeys. In the frontal lobe, labeled neurons were found mostly on the ipsilateral side in the (1) supplementary eye field region and lateral area F7; (2) area F2 along the superior limb of the arcuate sulcus; and (3) in the buried cortex of the arcuate sulcus extending along the superior and inferior limbs and including FEFsac and adjacent areas 8, 45, and PMv. Labeled cells were also found in the caudal periprincipal cortex (area 46) in one monkey. Labeled cells were found bilaterally in the frontal lobe in the deep posterior walls of the arcuate sulcus and postarcuate spurs and in cingulate motor areas 24 and 24c. In postcentral cortical areas all labeling was ipsilateral and there were two major foci of labeled cells: (1) the depths of the intraparietal sulcus including areas VIP, LIP, and PEa, and (2) the anterior wall and fundus of the superior temporal sulcus including areas PP and MST. Smaller numbers of labeled cells were found in superior temporal sulcal areas FST, MT, and STP, posterior cingulate area 23b, area 3a within the central sulcus, areas SII, RI, Tpt in the lateral sulcus, and parietal areas 7a, 7b, PEc, MIP, DP, and V3A. Many of these posterior afferent cortical areas code visual-motion (MT, MST, and FST) or visual-motion and vestibular (PP, VIP) signals, consistent with the responses of neurons in FEFsem and with the overall physiology and anatomy of the smooth-pursuit eye movement system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3a:

Sensorimotor cortex (Krubitzer et al. 2004)

7a:

Subdivision of Brodmann’s area 7 (Cavada and Goldman-Rakic 1989a)

7b:

Subdivision of Brodmann’s area 7 (Cavada and Goldman-Rakic 1989a)

8:

Brodmann’s area 8 (Preuss and Goldman-Rakic 1991)

23b:

Subdivision of Brodmann’s area 23 (Vogt et al. 1987)

24:

Brodmann’s area 24 (Vogt et al. 1987)

24c:

Subdivision of Brodmann’s area 24 (Vogt et al. 1987)

45:

Brodmann’s area 45 (Preuss and Goldman-Rakic 1991)

46:

Brodmann’s area 46 (Preuss and Goldman-Rakic 1991)

DP:

Dorsal prelunate area (Colby et al. 1988)

F2:

A dorsal premotor area (Matelli and Luppino 2001)

F7:

A dorsal premotor area (Matelli and Luppino 2001)

FEFsac:

Saccade part of the frontal eye field (Bruce et al. 1985)

FEFsem:

Smooth-pursuit part of the frontal eye field (MacAvoy et al. 1991)

FST:

Fundus of the superior temporal sulcus area (Boussaoud et al. 1990)

LIP:

Lateral intraparietal area (Blatt et al. 1990)

M1:

Primary motor cortex (Dum and Strick 1991)

MIP:

Medial intraparietal area (Colby et al. 1988)

MST:

Medial superior temporal area (Boussaoud et al. 1990)

MT:

Middle temporal area (Boussaoud et al. 1990)

PE:

Parietal area E (Brodmann’s area 5) (Marconi et al. 2001)

PEa:

Subdivision of area PE (Marconi et al. 2001)

PEc:

Subdivision of area PE (Marconi et al. 2001)

PMv:

Ventral part of the premotor area (Fujii et al. 2000)

PP:

Posterior parietal area (Colby et al. 1988)

RI:

Retroinsular area (Grüsser et al. 1990)

SEF:

Supplementary eye field (Schlag and Schlag-Rey 1987)

SII:

Secondary somatosensory area (Cipolloni and Pandya 1999)

STP:

Superior temporal polysensory area (Boussaoud et al. 1990)

Tpt:

Temporoparietal (auditory) area (Seltzer and Pandya 1989)

V3A:

A visuotopic prestriate area (Colby et al. 1988)

VIP:

Ventral intraparietal area (Bremmer et al. 2002a)

as:

arcuate sulcus

cs:

central sulcus

ips:

intraparietal sulcus

las:

lateral sulcus

lus:

lunate sulcus

ots:

occipitotemporal sulcus

pas:

postarcuate spur

ps:

principal sulcus

sts:

superior temporal sulcus

References

  • Akbarian S, Grüsser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Brotchie P, Mazzoni P (1992) Evidence for the lateral intraparietal area as the parietal eye field. Curr Opin Neurobiol 2:840–846

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Mesulam MM (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–228

    CAS  PubMed  Google Scholar 

  • Battaglia-Mayer A, Ferraina S, Genovesio A, Marconi B, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye–hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto–frontal association projections. Cereb Cortex 11:528–544

    Article  CAS  PubMed  Google Scholar 

  • Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an fMRI study. Hum Brain Map 8:209–225

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445

    Article  CAS  PubMed  Google Scholar 

  • Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296:462–495

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002a) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1554–1568

    Article  Google Scholar 

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002b) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586

    Article  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Friedman HR, Kraus MS, Stanton GB (2004) The primate frontal eye field. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 2. MIT Press, Cambridge, MA, pp1428–1448

  • Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    Article  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  CAS  Google Scholar 

  • Chavis DA, Pandya DN (1976) Further observations on corticofrontal connections in the rhesus monkey. Brain Res 117:369–386

    Article  CAS  PubMed  Google Scholar 

  • Cipolloni PB, Pandya DN (1999) Cortical connections of the frontoparietal opercular areas in the rhesus monkey. J Comp Neurol 403:431–458

    Article  PubMed  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel J-R, Goldberg ME (1993) Ventral intraparietal area of the macaque: Anatomic location and visual response properties. J Neurophysiol 69:902–914

    CAS  PubMed  Google Scholar 

  • Constantin A, Wang H, Crawford JD (2004) Role of superior colliculus in adaptive eye–head coordination during gaze shifts. J Neurophysiol 92:2168–2184

    Article  PubMed  Google Scholar 

  • Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248:164–189

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136

    CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    CAS  PubMed  Google Scholar 

  • Ebata S, Sugiuchi Y, Izawa Y, Shinomiya K, Shinoda Y (2004) Vestibular projection to the periarcuate cortex in the monkey. Neurosci Res 49:55–68

    Google Scholar 

  • Engel KC, Anderson JH, Soechting JF (2000) Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J Neurophysiol 84:1149–1156

    CAS  PubMed  Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Fogassi L, Raos V, Franchi G, Gallese V, Luppino G, Matelli M (1999) Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp Brain Res 128:194–199

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson J, Rubin A (1986) Vestibular cortex. In: Jones EG, Peters A (eds) Cerebral cortex. Sensory–motor areas and aspects of cortical connectivity, vol 5. Plenum Press, New York, pp 99–111

  • Fujii N, Mushiake H, Tanji J (2000) Rostrocaudal distinction of the dorsal premotor area based on oculomotor involvement. J Neurophysiol 83:1764–1769

    CAS  PubMed  Google Scholar 

  • Fukushima K (2003) Frontal cortical control of smooth-pursuit. Curr Opin Neurobiol 13:647–654

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Sato T, Fukushima J, Shinmei Y, Kaneko CR (2000) Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole-body rotation. J Neurophysiol 83:563–587

    CAS  PubMed  Google Scholar 

  • Gamlin PD, Yoon K (2000) An area for vergence eye movement in primate frontal cortex. Nature 407:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638

    CAS  PubMed  Google Scholar 

  • Ghosh S, Gattera R (1995) A comparison of the ipsilateral cortical projections to the dorsal and ventral subdivisions of the macaque premotor cortex. Somatosens Mot Res 12:359–378

    CAS  PubMed  Google Scholar 

  • Gottlieb JP, Bruce CJ, MacAvoy MG (1993) Smooth eye movements elicited by microstimulation in the primate frontal eye field. J Neurophysiol 69:786–799

    CAS  PubMed  Google Scholar 

  • Gottlieb JP, MacAvoy MG, Bruce CJ (1994) Neural responses related to smooth–pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. J Neurophysiol 72:1634–1653

    CAS  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol (Lond) 430:537–557

    Google Scholar 

  • Guldin WO, Akbarian S, Grüsser O-J (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401

    Article  CAS  PubMed  Google Scholar 

  • Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    Article  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. Cortical connections. J Comp Neurol 265:332–361

    Article  CAS  PubMed  Google Scholar 

  • Jones FN, Stanton GB (2001) Cortical afferents to the dorsal premotor area on the lip of the arcuate sulcus and postarcuate spur in macaque monkeys. Soc Neurosci 27:171

    Google Scholar 

  • Kalaska J, Cohen D, Prudhomme M, Hyde M (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80:351–364

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Sasaki M, Yamashita M (1980) Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett 17:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Sasaki M, Yamashita M (1984) Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. J Neurophysiol 51:340–351

    CAS  PubMed  Google Scholar 

  • Keating EG (1991) Frontal eye field lesions impair predictive and visually-guided pursuit eye movements. Exp Brain Res 86:311–323

    Article  CAS  PubMed  Google Scholar 

  • Keating EG (1993) Lesions of the frontal eye field impair pursuit eye but preserve the predictions driving them. Behav Brain Res 53:91–104

    CAS  PubMed  Google Scholar 

  • Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks; comparison of cortical eye fields with humans. Neuron 41:795–807

    Article  CAS  PubMed  Google Scholar 

  • Krubitzer L, Huffman KJ, Disbrow E, Recanzone G (2004) Organization of area 3a in macaque monkeys: contributions to the cortical phenotype. J Comp Neurol 471:97–111

    Article  PubMed  Google Scholar 

  • Kurata K (1991) Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys. Neurosci Res 12:263–280

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137

    Article  CAS  PubMed  Google Scholar 

  • MacAvoy MG, Gottlieb JP, Bruce CJ (1991) Smooth-pursuit eye movement representation in the primate frontal eye field. Cereb Cortex 1:95–102

    CAS  PubMed  Google Scholar 

  • Maioli MG, Squatrito S, Samolsky-Dekel BG, Sanseverino ER (1998) Corticocortical connections between frontal periarcuate regions and visual areas of the superior temporal sulcus and the adjoining inferior parietal lobule in the macaque monkey. Brain Res 789:118–125

    Article  CAS  PubMed  Google Scholar 

  • Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11:513–527

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G (2001) Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage 14: 527–532

    Article  Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251: 281–298

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402: 327–352

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M (1982) Principles of horseradish peroxidase neurochemistry and their applications for tracing neural pathways—axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. Wiley, New York

    Google Scholar 

  • Mitz A, Godschalk M (1989) Eye-movement representation in the frontal lobe of rhesus monkeys. Neurosci Lett 106:157–162

    Article  CAS  PubMed  Google Scholar 

  • Morrow MJ, Sharpe JA (1995) Deficits of smooth-pursuit eye movement after unilateral frontal lobe lesions. Ann Neurol 37:443–451

    Article  CAS  PubMed  Google Scholar 

  • Moschovakis AK, Gregoriou GG, Ugolini G, Doldan M, Graf W, Guldin W, Hadjidimitrakis K, Savaki HE (2004) Oculomotor areas of the primate frontal lobes: a transneuronal transfer of rabies virus and [14C]-2-deoxyglucose functional imaging study. J Neurosci 24:5726–5740

    Google Scholar 

  • Ödkvist LM, Schwarz DW, Fredrickson JM, Hassler R (1974) Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (Saimiri sciureus). Exp Brain Res 21:97–105

    PubMed  Google Scholar 

  • O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11:1335–1340

    CAS  PubMed  Google Scholar 

  • Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77:3386–3390

    CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  CAS  PubMed  Google Scholar 

  • Phinney RE, Siegel RM (2000) Speed selectivity for optic flow in area 7a of the behaving macaque. Cereb Cortex 10:413–421

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  CAS  PubMed  Google Scholar 

  • Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    Article  PubMed  Google Scholar 

  • Sakata H, Shibutani H, Kawano K (1983) Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. J Neurophysiol 49:1364–1380

    CAS  PubMed  Google Scholar 

  • Scalaidhe SP, Rodman HR, Albright TD, Gross CG (1997) The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey. Behav Brain Res 84:31–46

    Article  CAS  PubMed  Google Scholar 

  • Scarchilli K, Vercher JL, Gauthier GM, Cole J (1999) Does the oculo-manual co-ordination control system use an internal model of the arm dynamics? Neurosci Lett 265:139–142

    Google Scholar 

  • Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15:4464–4487

    Google Scholar 

  • Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol 551:551–561

    Article  CAS  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    CAS  PubMed  Google Scholar 

  • Seltzer B, Pandya DN (1989) Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 290:451–471

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Friedman HR, Bruce CJ (1998) Deficits in smooth-pursuit eye movements after muscimol inactivation within the primate’s frontal eye field. J Neurophysiol 80:458–464

    CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83:1979–2001

    Google Scholar 

  • Stanton GB, Bruce CJ, Goldberg ME (1993) Topography of projections to the frontal lobe from the macaque frontal eye fields. J Comp Neurol 330:286–301

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fukushima K (1998) Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. J Neurophysiol 80:28–47

    CAS  PubMed  Google Scholar 

  • Tanaka M, Lisberger SG (2002a) Enhancement of multiple components of pursuit eye movement by microstimulation in the arcuate frontal pursuit area in monkeys. J Neurophysiol 87:802–818

    PubMed  Google Scholar 

  • Tanaka M, Lisberger SG (2002b) Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. J Neurophysiol 87:2684–2699

    PubMed  Google Scholar 

  • Tanaka M, Lisberger SG (2002c) Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements, II, Relation to vector averaging pursuit. J Neurophysiol 87:2700–2714

    PubMed  Google Scholar 

  • Tanné-Gariépy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103

    Article  PubMed  Google Scholar 

  • Taoka M, Toda T, Iwamura Y (1998) Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex. Exp Brain Res 123:315–322

    Article  CAS  PubMed  Google Scholar 

  • Tian JR, Lynch JC (1996a) Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. J Neurophysiol 76:2740–2753

    CAS  Google Scholar 

  • Tian JR, Lynch JC (1996b) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. J Neurophysiol 76:2754–2771

    CAS  Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, Goldstein MH Jr (1986) Unit study of monkey frontal cortex active localization of auditory and visual stimuli. J Neurophysiol 56:934–952

    CAS  PubMed  Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Eye Institute Grant EY-04740 and National Institute of Mental Health Grant MH-44866. Address reprint requests to Gregory B. Stanton, Department of Anatomy, Howard University College of Medicine, Washington DC 06520-8001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Stanton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanton, G.B., Friedman, H.R., Dias, E.C. et al. Cortical afferents to the smooth-pursuit region of the macaque monkey’s frontal eye field. Exp Brain Res 165, 179–192 (2005). https://doi.org/10.1007/s00221-005-2292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2292-z

Keywords

Navigation