Skip to main content
Log in

Memory-guided saccades in Parkinson’s disease: long delays can improve performance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A recent study in control subjects suggested the existence of separate pathways for oculomotor spatial working memory tasks depending on whether the delay before movement execution is either short or long (>20 s). The long delay pathway might bypass brain areas commonly affected by Parkinson’s disease (PD). This study aimed to assess spatial working memory in Parkinson’s disease using short (3 s) and long (30 s) delays in a memory-guided saccade task. Fifteen mild-moderately affected PD subjects off-medication, and 15 age and sex-matched controls were tested (PD mean age 65.3; control 65.9). Subjects were tested in a darkened room using a horizontal LED bar to generate eye movements which were recorded using an infrared limbus tracker. Percentage error in amplitude of the primary saccade was analysed by repeated measures ANOVA. There was a significant interaction between the groups and their response to the short and long delay periods (P<0.02). PD subjects were more strongly impaired in the short delay than the long delay trials when compared with controls. Analysis of the percentage error in amplitude of the final eye position showed the same pattern but only in female subjects. This study provides the first evidence that the proposed parallel spatial memory pathway utilised in longer delay periods is relatively unimpaired in PD. In a broader sense, our results suggest there might be other alternative pathways to overcome deficits in functions impaired by PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9 Suppl 2: S83–89

    Article  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    CAS  PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    CAS  PubMed  Google Scholar 

  • Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55:169–179

    Article  CAS  PubMed  Google Scholar 

  • Crawford TJ, Henderson L, Kennard C (1989) Abnormalities of nonvisually-guided eye movements in Parkinson’s disease. Brain 112:1573-1586

    PubMed  Google Scholar 

  • Ding SL, Van Hoesen G, Rockland KS (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510–530

    Article  CAS  PubMed  Google Scholar 

  • Duff SJ, Hampson E (2001) A sex difference on a novel spatial working memory task in humans. Brain Cogn 47:470–493

    Article  CAS  PubMed  Google Scholar 

  • Hodgson TL, Dittrich WH, Henderson L, Kennard C (1999) Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia 37:927–938

    Article  CAS  PubMed  Google Scholar 

  • Kaasinen V, Nurmi E, Bruck A, Eskola O, Bergman J, Solin O, Rinne JO (2001) Increased frontal [18F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 124:1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Ketcham CJ, Hodgson TL, Kennard C, Stelmach GE (2003) Memory-motor transformations are impaired in Parkinson’s disease. Exp Brain Res 149:30–39

    PubMed  Google Scholar 

  • Kikuchi A, Takeda A, Kimpara T, Nakagawa M, Kawashima R, Sugiura M, Kinomura S, Fukuda H, Chida K, Okita N (2001) Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson’s disease. Journal of the Neurological Sciences 193:29–36

    Article  CAS  PubMed  Google Scholar 

  • Lavenex P, Suzuki WA, Amaral DG (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447:394–420

    Article  PubMed  Google Scholar 

  • Lueck CJ, Crawford TJ, Henderson L, Van Gisbergen JA, Duysens J, Kennard C (1992) Saccadic eye movements in Parkinson’s disease: II. Remembered saccades – towards a unified hypothesis? Q J Exp Psychol A 45:211–233

    CAS  PubMed  Google Scholar 

  • Lueck CJ, Tanyeri S, Crawford TJ, Henderson L (1990) Antisaccades and remembered saccades in Parkinson’s disease. J Neurol Neurosurg Psychiatry 53:284–288

    CAS  PubMed  Google Scholar 

  • MacAskill MR, Anderson TJ, Jones RD (2002) Adaptive modification of saccade amplitude in Parkinson’s disease. Brain 125:1570–1582

    Article  PubMed  Google Scholar 

  • Muir SR, MacAskill MR, Herron D, Goelz H, Anderson TJ, Jones RD (2003) EMMA – an eye movement measurement and analysis system. Australasian Physical & Engineering Sciences in Medicine 26:18–24

    Google Scholar 

  • Müri RM, Gaymard B, Rivaud S, Vermersch A, Hess CW, Pierrot-Deseilligny C (2000) Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study. Neuropsychologia 38:1105–1111

    Article  PubMed  Google Scholar 

  • Müri RM, Vermersch AI, Rivaud S, Gaymard B, Pierrot-Deseilligny C (1996) Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. J Neurophysiol 76:2102–2106

    PubMed  Google Scholar 

  • Nyffeler T, Pierrot-Deseilligny C, Felblinger J, Mosimann UP, Hess CW, Müri RM (2002) Time-dependent hierarchical organization of spatial working memory: a transcranial magnetic simulation study. Eur J Neurosci 16:1823–1827

    Article  PubMed  Google Scholar 

  • Nyffeler T, Pierrot-Deseilligny C, Pflugshaupt T, Von Wartburg R, Hess CW, Müri RM (2004) Information processing in long delay memory-guided saccades: further insights from TMS. Exp Brain Res 154:109–112

    Article  PubMed  Google Scholar 

  • O’Sullivan EP, Jenkins IH, Henderson L, Kennard C, Brooks DJ (1995) The functional anatomy of remembered saccades: a PET study. Neuroreport 6:2141–2144

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Müri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Péchoux S (2002) Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126:1460–1473

    Article  Google Scholar 

  • Pierrot-Deseilligny C, Ploner CJ, Müri RM, Gaymard B, Rivaud-Péchoux S (2002) Effects of cortical lesions on saccadic eye movements in humans. Ann N Y Acad Sci 956:216–229

    PubMed  Google Scholar 

  • Ploner CJ, Gaymard B, Rivaud S, Agid Y, Pierrot-Deseilligny C (1998) Temporal limits of spatial working memory in humans. Eur J Neurosci 10:794–797

    Article  CAS  PubMed  Google Scholar 

  • Ploner CJ, Gaymard BM, Rivaud-Pechoux S, Baulac M, Clemenceau S, Samson S, Pierrot-Deseilligny C (2000) Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cereb Cortex 10:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Reulen JPH, Marcus JT, Koops D, de Vries FR, Tiesinga G, Boshuizen K, Bos JE (1988) Precise recording of eye movement: the IRIS technique Part 1. Med Biol Eng Comput 26:20-26

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8: 4049–4068

    CAS  PubMed  Google Scholar 

  • Shaunak S, O’Sullivan E, Blunt S, Lawden M, Crawford T, Henderson L, Kennard C (1999) Remembered saccades with variable delay in Parkinson’s disease. Mov Disord 14:80–86

    Article  CAS  PubMed  Google Scholar 

  • Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR (1996) Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75:454–468

    CAS  PubMed  Google Scholar 

  • Tsujimoto S, Sawaguchi T (2004) Properties of delay-period neuronal activity in the primate prefrontal cortex during memory- and sensory-guided saccade tasks. Eur J Neurosci 19:447–457

    Article  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Summer Studentship from the Medical Assurance Society (to CJL) and the Philip Wrightson Fellowship of the Neurological Foundation of New Zealand (to MRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. MacAskill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Heron, C.J., MacAskill, M.R. & Anderson, T.J. Memory-guided saccades in Parkinson’s disease: long delays can improve performance. Exp Brain Res 161, 293–298 (2005). https://doi.org/10.1007/s00221-004-2071-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2071-2

Keywords

Navigation