Skip to main content
Log in

Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Using a conditioning paradigm, the olfactory sensitivity of three squirrel monkeys and three pigtail macaques for homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone), symmetrical ketones (3-pentanone to 6-undecanone), and C7-ketones (2-heptanone to 4-heptanone) was assessed. In the majority of cases, the animals of both species significantly discriminated concentrations below 1 ppm from the odorless solvent, and with 2-nonanone and 5-nonanone the monkeys even demonstrated thresholds below 1 ppb. The results showed both primate species have a well-developed olfactory sensitivity for aliphatic ketones, and pigtail macaques generally perform better than squirrel monkeys in detecting members of this class of odorants. Further, in both species tested, we found a significant negative correlation between perceptibility in terms of olfactory detection thresholds and carbon-chain length of both the 2-ketones and the symmetrical ketones, but not between detection thresholds and position of the functional group with the C7-ketones. These findings lend further support to the growing body of evidence suggesting that between-species comparisons of the number of functional olfactory receptor genes or of neuroanatomical features are poor predictors of olfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR (2002) Chemical analysis of human skin emanations: comparison of volatiles form humans that differ in attraction to Aedes aegypti (Diptera: Culicidae). J Am Mosquito Contr Assoc 18:186–195

    CAS  Google Scholar 

  • Brown WM (2001) Natural selection of mammlian brain components. Trends Ecol Evol 16:471–473

    Article  Google Scholar 

  • Devos M, Patte F, Rouault J, Laffort P, van Gemert LJ (1990) Standardized human olfactory thresholds. IRL Press, Oxford

  • Dusenbery DB (1992) Sensory Ecology. How organisms acquire and respond to information. Freeman, New York

  • Gilad Y, Wiebe V, Przeworski M, Lancet D, Pääbo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:120–125

    Article  CAS  Google Scholar 

  • Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11:685–702

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Salazar LT, Laska M, Rodriguez Luna E (2003) Olfactory sensitivity for aliphatic esters in spider monkeys (Ateles geoffroyi). Behav Neurosci 117:1142–1149

    Article  PubMed  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Google Scholar 

  • Hübener F, Laska M (2001) A two-choice discrimination method to assess olfactory performance in pigtailed macaques, Macaca nemestrina. Physiol Behav 72:511–519

    Article  PubMed  Google Scholar 

  • Johnson BA, Leon M (2000) Odorant molecular length: one aspect of the olfactory code. J Comp Neurol 426:330–338

    Article  CAS  PubMed  Google Scholar 

  • Kaluza JF, Breer H (2000) Responsiveness of olfactory neurons to distinct aliphatic aldehydes. J Exp Biol 203:927–933

    CAS  PubMed  Google Scholar 

  • King JE, Fobes JL (1974) Evolutionary changes in primate sensory capacities. J Hum Evol 3:435–443

    Google Scholar 

  • Laska M, Freyer D (1997) Olfactory discrimination ability for aliphatic esters in squirrel monkeys and humans. Chem Senses 22:457–465

    CAS  PubMed  Google Scholar 

  • Laska M, Hudson R (1993a) Assessing olfactory performance in a New World primate, Saimiri sciureus. Physiol Behav 53:89–95

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Hudson R (1993b) Discriminating parts from the whole: determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. J Comp Physiol A 173:249–256

    CAS  PubMed  Google Scholar 

  • Laska M, Hudson R (1995) Ability of female squirrel monkeys (Saimiri sciureus) to discriminate between conspecific urine odours. Ethology 99:39–52

    Google Scholar 

  • Laska M, Seibt A (2002a) Olfactory sensitivity for aliphatic esters in squirrel monkeys and pigtail macaques. Behav Brain Res 134:165–174

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Seibt A (2002b) Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J Exp Biol 205:1633–1643

    CAS  PubMed  Google Scholar 

  • Laska M, Teubner P (1998) Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. Am J Physiol Regul Integr Comp Physiol 274:R1639–R1645

    CAS  Google Scholar 

  • Laska M, Alicke T, Hudson R (1996) A study of long-term odor memory in squirrel monkeys, Saimiri sciureus. J Comp Psychol 110:125–130

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Liesen A, Teubner P (1999a) Enantioselectivity of odor perception in squirrel monkeys and humans. Am J Physiol Regul Integr Comp Physiol 277:R1098–R1103

    CAS  Google Scholar 

  • Laska M, Trolp S, Teubner P (1999b) Odor structure-activity relationships correspond between human and non-human primates. Behav Neurosci 113:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Seibt A, Weber A (2000) “Microsmatic” primates revisited—olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Hofmann M, Simon Y (2003) Olfactory sensitivity for aliphatic aldehydes in squirrel monkeys and pigtail macaques. J Comp Physiol A 189:263–271

    CAS  Google Scholar 

  • Laska M, Wieser A, Rivas Bautista RM, Hernandez Salazar LT (2004) Olfactory sensitivity for carboxylic acids in spider monkeys and pigtail macaques. Chem Senses 29:101–109

    Article  PubMed  Google Scholar 

  • Meisami E (1989) A proposed relationship between increases in the number of olfactory receptor neurons, convergence ratio and sensitivity in the developing rat. Dev Brain Res 46:9–19

    Article  CAS  Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    Article  CAS  PubMed  Google Scholar 

  • Olender T, Fuchs T, Linhart C, Shamir R, Adams M, Kalush F, Ken M, Lancet D (2004) The canine olfactory subgenome. Genomics 83:361–372

    Article  CAS  PubMed  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  CAS  PubMed  Google Scholar 

  • Schoenemann PT (2001) Brain scaling, behavioral ability, and human evolution. Behav Brain Sci 24:293–295

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw Hill, New York

  • Stephan H, Baron G, Frahm HD (1988) Comparative size of brains and brain structures. In: Steklis H, Erwin J (eds) Comparative primate biology, vol 4. Alan R Liss, New York, pp 1–38

  • Stevens JC, Cain WS, Burke RJ (1988) Variability of olfactory thresholds. Chem Senses 13:643–653

    CAS  Google Scholar 

  • van Gemert LJ (2003) Compilations of odour threshold values in air, water, and other media. Bacis, Zeist Netherlands

  • Wahl HG, Hoffmann A, Luft D, Liebich HM (1999) Analysis of volatile organic compounds in human urine by headspace gas chromatography–mass spectrometry with a multipurpose sampler. J Chromatogr A 847:117–125

    Article  CAS  PubMed  Google Scholar 

  • Weast RC (1987) Handbook of chemistry and physics, 68th edn. CRC Press, Boca Raton

  • Young JM, Trask BJ (2002) The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11:1153–1160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (La 635/10-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Laska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laska, M., Miethe, V., Rieck, C. et al. Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques. Exp Brain Res 160, 302–311 (2005). https://doi.org/10.1007/s00221-004-2012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2012-0

Keywords

Navigation