Skip to main content
Log in

Behavioral studies of auditory-visual spatial recognition and integration in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Rodents are useful animal models in the study of the molecular and cellular mechanisms underlying various neural functions. For studying behavioral properties associated with multisensory functions in rats, we measured the speed and accuracy of target detection by the reaction-time procedure. In the first experiment, we utilized simple two-alternative-choice tasks, in which spatial cues are visual or auditory modalities, and conducted a cross-modal transfer test in order to determine whether rats recognize amodal spatial information. Rats showed successful performance in the cross-modal transfer test and the speed to respond to sensory stimuli was constant under a rule-consistent condition despite the change in cue modality. In the second experiment, we developed audiovisual two-alternative-choice tasks, in which both auditory and visual stimuli were simultaneously presented but one of the two modalities was task-relevant, in order to determine whether the response to the sensory stimulation of one modality is enhanced by the stimulation of a different modality. If bimodal stimuli were spatially coincident, the speed for detecting the relevant stimulus was shortened and the extent of the effect was comparable to those in past studies of humans and other mammals. These results indicate the cross-modal spatial abilities of rats and our present paradigms may provide useful behavioral tasks for studying the neural bases of multisensory processing and integration in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c
Fig. 2a–c
Fig. 3a, b
Fig. 4
Fig. 5a–d

Similar content being viewed by others

References

  • Anastasio TJ, Patton PE (2003) A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system. J Neurosci 23:6713–6727

    CAS  PubMed  Google Scholar 

  • Barth DS, Kithas J, Di S (1993) Anatomic organization of evoked potentials in rat parietotemporal cortex: somatosensory and auditory responses. J Neurophysiol 69:1837–1849

    CAS  PubMed  Google Scholar 

  • Barth DS, Goldberg N, Brett B, Di S (1995) The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Res 678:177–190

    Article  PubMed  Google Scholar 

  • Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132

    CAS  PubMed  Google Scholar 

  • Brett-Green B, Fifkova E, Larue DT, Winer JA, Barth DS (2003) A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections. J Comp Neurol 460:223–237

    Article  PubMed  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    Article  CAS  PubMed  Google Scholar 

  • Calvert GA, Brammer MJ, Iversen SD (1998) Crossmodal identification. Trends Cogn Sci 2:247–253

    Article  Google Scholar 

  • Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10:649–657

    Article  CAS  PubMed  Google Scholar 

  • Church RM, Meck WH (1983) Acquisition and cross-modal transfer of classification rules for temporal intervals. In: Commons ML, Herrnstein RL, Wagner AR (eds) Quantitative analysis of behavior: discrimination processes, vol 4. Ballinger, Cambridge, MA, pp 75–97

  • Cooper BG, Miya DY, Mizumori SJY (1998) Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space. Hippocampus 8:340–372

    Article  CAS  PubMed  Google Scholar 

  • Di S, Brett B, Barth DS (1994) Polysensory evoked potentials in rat parietotemporal cortex: combined auditory and somatosensory responses. Brain Res 642:267–280

    Article  CAS  PubMed  Google Scholar 

  • Driver J, Spence C (1998) Attention and the crossmodal construction of space. Trends Cogn Sci 2:254–262

    Article  Google Scholar 

  • Ettlinger G, Wilson WA (1990) Cross-modal performance: behavioural processes, phylogenetic considerations and neural mechanisms. Behav Brain Res 40:169–192

    Article  CAS  PubMed  Google Scholar 

  • Frens MA, Van Opstal AJ (1998) Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46:211–224

    Article  CAS  PubMed  Google Scholar 

  • Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816

    CAS  PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    Article  CAS  PubMed  Google Scholar 

  • Goldring JE, Dorris MC, Corneil BD, Ballantyne PA, Munoz DP (1996) Combined eye-head gaze shifts to visual and auditory targets in humans. Exp Brain Res 111:68–78

    CAS  PubMed  Google Scholar 

  • Huerta MF, Harting JK (1984) The mammalian superior colliculus: studies of its morphology and connections. In: Vanegas H (ed) Comparative neurobiology of the optic tectum. Plenum, New York, pp 687–773

  • Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R (1994) Visual-auditory interactions in sensorimotor processing: saccades versus manual responses. J Exp Psychol Hum Percept Perform 20:131–153

    Article  CAS  PubMed  Google Scholar 

  • Hughes HC, Nelson MD, Aronchick DM (1998) Spatial characteristics of visual-auditory summation in human saccades. Vision Res 38:3955–3963

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Stein BE (2003) Cortex controls multisensory depression in superior colliculus. J Neurophysiol 90:2123–2135

    PubMed  Google Scholar 

  • Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522

    CAS  PubMed  Google Scholar 

  • Jiang W, Jiang H, Stein BE (2002) Two corticotectal areas facilitate multisensory orientation behavior. J Cogn Neurosci 14:1240–1255

    Article  PubMed  Google Scholar 

  • Kadunce DC, Vaughan JW, Wallace MT, Stein BE (2001) The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Exp Brain Res 139:303–310

    Article  CAS  PubMed  Google Scholar 

  • Laurienti PJ, Burdette JH, Wallace MT, Yen Y, Field AS, Stein BE (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 14:420–429

    Article  PubMed  Google Scholar 

  • Laurienti PJ, Wallace MT, Maldjian JA, Susi CM, Stein BE, Burdette JH (2003) Cross-modal sensory processing in the anterior cingulate and median prefrontal cortices. Hum Brain Mapp 19: 213–223

    Article  PubMed  Google Scholar 

  • Meck WH, Church RM (1982) Abstraction of temporal attributes. J Exp Psychol 8:226–243

    Google Scholar 

  • Mendelson MJ (1979) Acoustic-optical correspondences and auditory-visual coordination in infancy. Can J Psychol 33:334–346

    CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662

    CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857

    CAS  PubMed  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. 1. Temporal factors. J Neurosci 7:3215–3229

    CAS  PubMed  Google Scholar 

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128

    Article  PubMed  Google Scholar 

  • Populin LC, Yin TC (2002) Bimodal interactions in the superior colliculus of the behaving cat. J Neurosci 22:2826–2834

    CAS  PubMed  Google Scholar 

  • Robbins TW, Muir JL, Killcross AS, Pretsell D (1993) Methods for assessing attention and stimulus control in the rat. In: Sahgal A (ed) Behavioral neuroscience: a practical approach, vol 1. Oxford University Press, New York, pp 13–47

  • Sakata S, Kitsukawa T, Kaneko T, Yamamori T, Sakurai Y (2002) Task-dependent and cell-type-specific Fos enhancement in rat sensory cortices during audio-visual discrimination. Eur J Neurosci 15:735–743

    Article  PubMed  Google Scholar 

  • Sakata S, Yamamori T, Sakurai Y (2003) Behavioral studies of multisensory processing in the rat. Soc Neurosci Abst 29:267.5

    Google Scholar 

  • Schröger E, Widmann A (1998) Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology 35:755–759

    Article  PubMed  Google Scholar 

  • Simon JR, Craft JL (1970) Effects of an irrelevant auditory stimulus on visual choice reaction time. J Exp Psychol 86:272–274

    CAS  PubMed  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge, MA

  • Stein BE, Huneycutt WS, Meredith MA (1988) Neurons and behavior: the same rules of multisensory integration apply. Brain Res 448:355–358

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Meredith MA, Huneycutt WS, McDade L (1989) Behavioral indices of multisensory integration: orientation to visual cues is affected by auditory stimuli. J Cogn Neurosci 1:12–24

    Google Scholar 

  • Stein BE, Jiang W, Wallace MT, Stanford TR (2001) Nonvisual influences on visual-information processing in the superior colliculus. In: Casanova C, Ptito M (eds) Progress in brain research, vol 131. Elsevier Science B. V., Netherlands, pp 143–156

  • Taylor TL, Klein RM, Munoz DP (1999) Saccadic performance as a function of the presence and disappearance of auditory and visual fixation stimuli. J Cogn Neurosci 11:206–213

    Article  CAS  PubMed  Google Scholar 

  • Tees RC (1994) Early stimulation history, the cortex and intersensory functioning in infrahumans. In: Lewkowicz JD, Lickliter RJ (eds) Development of intersensory perception: comparative perspective. Erlbaum, Hillsdale, NJ, pp 107–131

  • Tees RC (1999) The effects of posterior parietal and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav Brain Res 106:55–73

    Article  CAS  PubMed  Google Scholar 

  • Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266

    CAS  PubMed  Google Scholar 

  • Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the superior colliculus of the alert cat. J Neurophysiol 80:1006–1010

    CAS  PubMed  Google Scholar 

  • Weese GD, Phillips JM, Brown VJ (1999) Attentional orienting is impaired by unilateral lesions of the thalamic reticular nucleus in the rat. J Neurosci 19:10135–10139

    CAS  PubMed  Google Scholar 

  • Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modal orientation and approach behavior. Exp Brain Res 112:1–10

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research on Priority Area (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T.Y.) and by the CREST Program from the Japan Science and Technology Agency (to Y.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Yamamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata, S., Yamamori, T. & Sakurai, Y. Behavioral studies of auditory-visual spatial recognition and integration in rats. Exp Brain Res 159, 409–417 (2004). https://doi.org/10.1007/s00221-004-1962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1962-6

Keywords

Navigation