Skip to main content
Log in

Effects of electrode penetrations into the abducens nucleus of the monkey: eye movement recordings and histopathological evaluation of the nuclei and lateral rectus muscles

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Two adult rhesus monkeys that had undergone 2 years of electrode penetrations into their abducens and vestibular nuclei, for chronic eye movement studies, were examined histologically. An analysis of their VIth nucleus neurons and lateral rectus muscles revealed the following. Twenty-two percent of the large neurons (≈30 µm in diameter), on average, were missing and extensive neuropil disruption and gliosis was evident in the experimental side abducens nuclei as compared with the control side in each animal. While the lateral rectus muscles showed small, but inconsistent, changes in total fiber number, the muscle fiber diameters were altered, leading to a more homogenous muscle and making the typical orbital and global subdivisions of the muscle less distinct. Eye movement records from before and after the electrophysiological studies were comparable. We discuss how the complex architecture of the extraocular muscles as well as the possibility of polyneuronal innervation of single muscle fibers could explain our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–f
Fig. 3a–f
Fig. 4a, b

Similar content being viewed by others

References

  • Alvarado JA, Van Horn C (1975) Muscle cell types of the cat inferior oblique. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 15–43

  • Bach-y-Rita P, Lennerstrand G (1975) Absence of polyneuronal innervation in cat extraocular muscles. J Physiol 244:613–624

    CAS  PubMed  Google Scholar 

  • Bahill AT, Clark MR, Stark L (1975) The main sequence: a tool for studying human eye movements. Math Biosci 24:191–204

    Article  Google Scholar 

  • Brown MC, Matthews PBC (1960) An investigation into the possible existence of polyneuronal innervation of individual skeletal muscle fibers in certain hind-limb muscles of the cat. J Physiol 151:436–456

    CAS  PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnius. J Physiol 234:723–748

    CAS  PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438:318–335

    Article  PubMed  Google Scholar 

  • Delgado-Garcia JM, Del Pozo F, Baker R (1986a) Behavior of neurons in the abducens nucleus of the alert cat. I. Motoneurons. Neuroscience 17:929–952

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Garcia JM, Del Pozo F, Baker R (1986b) Behavior of neurons in the abducens nucleus of the alert cat. II. Internuclear neurons. Neuroscience 17:953–973

    Article  CAS  PubMed  Google Scholar 

  • Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol 21:1068–1071

    CAS  PubMed  Google Scholar 

  • Fuchs AF, Kaneko CRS, Scudder CA (1985) Brainstem control of saccadic eye movements. Ann Rev Neurosci 8:307–337

    Article  CAS  PubMed  Google Scholar 

  • Gizzi M, DiRocco A, Sivak M, Cohen B (1992) Ocular motor function in motor neuron disease. Neurol 42:1037–1046

    CAS  Google Scholar 

  • Goldberg SJ (1990) Mechanical properties of extraocular motor units. In: Binder MD, Mendell LM (eds) The segmental motor system. Oxford University Press, Oxford pp 222–238

  • Goldberg SJ, Clamann HP, McClung JR (1981) Relation between motoneuron position and lateral rectus motor unit contraction speed: an intracellular study in the cat abducens nucleus. Neurosci Lett 23:49–54

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SJ, Wilson KE, Shall MS (1997) Summation of extraocular motor unit tensions in the lateral rectus muscle of the cat. Muscle Nerve 20:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SJ, Meredith MA, Shall MS (1998) Extraocular motor unit and whole-muscle responses in the lateral rectus muscle of the squirrel monkey. J Neurosci 18:10629–10639

    CAS  PubMed  Google Scholar 

  • Jacoby J, Chiarandini DJ, Stefani E (1989) Electrical properties and innervation of fibers in the orbital layer of rat extraocular muscles. J Neurophysiol 61:116–125

    CAS  PubMed  Google Scholar 

  • Hayes AV, Richmond BJ, Optican LM (1982) A UNIX-based multiple process system for real-time data acquisition and control. WESCON Conf Proc 2:1–10

    Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    CAS  PubMed  Google Scholar 

  • Kaminski HJ, Richmonds CR, Kusner LL, Mitsumoto H (2002) Differential susceptibility of the ocular motor system to disease. Ann NY Acad Sci 956:42–54

    PubMed  Google Scholar 

  • Kernell EL, Verhey BA, Eerbeck O (1985) Neuronal and muscle unit properties at different rostro-caudal levels of cat’s motoneurone pool. Brain Res 335:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Koyama J, Yokouchi K, Fukushima N, Oikawa S, Morizumi T (2002) Functionally essential neuronal populations of the facial motor nucleus. Neurosci Res 45:357–361

    Article  Google Scholar 

  • Lennerstrand G (1974) Electrical activity and isometric tension in motor units of the cat’s inferior oblique muscle. Acta Physiol Scand 91:458–474

    CAS  PubMed  Google Scholar 

  • Mayr R, Gottschall J, Gruber H, Neuhuber W (1975) Internal structure of cat extraocular muscle. Anat Embryol 148:25–34

    CAS  PubMed  Google Scholar 

  • McClung JR, Shall MS, Goldberg SJ (2001) Motoneurons of the lateral and medial rectus extraocular muscles in squirrel monkey and cat. Cells Tissues Organs 168:220–227

    CAS  PubMed  Google Scholar 

  • McLoon LK, Rios L, Wirtshaffer JD (1999) Complex three-dimensional patterns of myosin isoform expression: differences between and within specific extraocular muscles. J Muscle Res Cell Motil 20:771–783

    CAS  PubMed  Google Scholar 

  • Meredith MA, Goldberg SJ (1986) Contractile differences between muscle units in the medial rectus and lateral rectus muscles in the cat. J Neurophysiol 56:50–62

    CAS  PubMed  Google Scholar 

  • Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24:848–866

    Article  CAS  PubMed  Google Scholar 

  • Muhlendyck H (1978) The size of motor units in reference to eye-muscle fibers of different innervation. In: Kommerell G (ed) Disorders of ocular motility. Bergmann, Munich, pp 17–26

  • Nelson JS, Goldberg SJ, McClung JR (1986) Motoneuron electrophysiological and muscle contractile properties of superior oblique motor units in cat. J Neurophysiol 55:715–726

    CAS  PubMed  Google Scholar 

  • Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    CAS  PubMed  Google Scholar 

  • Peachey L (1971) The structure of the extraocular muscle fibers of mammals. In: Bach-y-Rita P (ed) The control of eye movements. Academic Press, New York, pp 47–65

  • Scudder CA, McGee DM (2003) Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. J Neurophysiol 90:1011–1026

    PubMed  Google Scholar 

  • Scudder CA, Kaneko CRS, Fuchs AL (2002) The brainstem burst generator for saccadic eye movement. A modern synthesis. Exp Brain Res 142:439–462

    Article  PubMed  Google Scholar 

  • Shall MS, Goldberg SJ (1992) Extraocular motor units: type classification and motoneuron stimulation frequency-muscle unit force relationships. Brain Res 587:291–300

    Article  CAS  PubMed  Google Scholar 

  • Shall MS, Goldberg SJ (1995) Lateral rectus EMG and contractile responses elicited by cat abducens motoneurons. Muscle Nerve 18:948–955

    CAS  PubMed  Google Scholar 

  • Shall MS, Dimitrova DM, Goldberg SJ (2003) Extraocular motor unit and whole muscle contractile properties in the squirrel monkey: summation of forces and fiber morphology. Exp Brain Res 151:338–345

    Article  PubMed  Google Scholar 

  • Sylvestre PA, Cullen KE (1999) Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 82:2612–2632

    CAS  PubMed  Google Scholar 

  • Spencer RF, Porter JD (1988) Structural organization of the extraocular muscles. In: Büttner-Ennever JA (ed) Neuroanatomy of the oculomotor system. Elsevier, Amsterdam, pp 33–79

  • Waldeck RF, Murphy EH, Pinter MJ (1995) Properties of motor units and self-reinnervation of the cat superior oblique muscle. J Neurophysiol 74:2309–2318

    CAS  PubMed  Google Scholar 

  • Wieczorek DF, Periasamy M, Butler-Browne GS, Whalen RG, Nadal-Ginard B (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol 101:618–629

    Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health grants EY 11249 and EY 02191 and by a Medical Research Council of Canada (MRC) grant to Dr. Cullen. The authors greatly appreciate the help of Dr. John T. Povlishock for his advice on histo-pathological techniques as well as the technical assistance of Sue Walker and Barbara Mann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClung, J.R., Cullen, K.E., Shall, M.S. et al. Effects of electrode penetrations into the abducens nucleus of the monkey: eye movement recordings and histopathological evaluation of the nuclei and lateral rectus muscles. Exp Brain Res 158, 180–188 (2004). https://doi.org/10.1007/s00221-004-1892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1892-3

Keywords

Navigation