Skip to main content
Log in

Regularization Estimates and Cauchy Theory for Inhomogeneous Boltzmann Equation for Hard Potentials Without Cut-Off

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problems of Cauchy theory and exponential stability for the inhomogeneous Boltzmann equation without angular cut-off. We only deal with the physical case of hard potentials type interactions (with a moderate angular singularity). We prove a result of existence and uniqueness of solutions in a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a polynomial weight, contrary to previous works on the subject, all developed with a weight prescribed by the equilibrium. It is the first result in this more physically relevant framework for this equation. Moreover, we prove an exponential stability for such a solution, with a rate as close as we want to the optimal rate given by the semigroup decay of the linearized equation. Let us highlight the fact that a key point of the development of our Cauchy theory is the proof of new regularization estimates in short time for the linearized operator thanks to pseudo-differential tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alexandre, R., Hérau, F., Li, W.-X.: Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. J. Math. Pures Appl. 126, 1–71 (2019)

    Article  MathSciNet  Google Scholar 

  3. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 39–123 (2010)

    Article  MathSciNet  Google Scholar 

  4. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: Ii, global existence for hard potential. Anal. Appl. (Singap.) 9(2), 113–134 (2011)

    Article  MathSciNet  Google Scholar 

  5. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions. Arch. Ration. Mech. Anal. 202(2), 599–661 (2011)

    Article  MathSciNet  Google Scholar 

  6. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: I, global existence for soft potential. J. Funct. Anal. 262(3), 915–1010 (2012)

    Article  MathSciNet  Google Scholar 

  8. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MathSciNet  Google Scholar 

  9. Alonso, R., Morimoto, Y., Sun, W., Yang, T.: Non-Cutoff Boltzmann Equation with Polynomial Decay Perturbation. To appear in Revista Matematica Iberoamericana (2020). arXiv:1812.05299

  10. Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoam. 21(3), 819–841 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin-New York (1976)

    Book  Google Scholar 

  12. Bobylëv, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. In: Mathematical Physics Reviews, Vol. 7, vol. 7 of Soviet Sci. Rev. Sect. C Math. Phys. Rev., pp. 111–233. Harwood Academic Publ., Chur(1988)

  13. Carrapatoso, K., Tristani, I., Wu, K.-C.: Cauchy problem and exponential stability for the inhomogeneous Landau equation. Arch. Ration. Mech. Anal. 221(1), 363–418 (2016)

    Article  MathSciNet  Google Scholar 

  14. Cercignani, C.: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Book  Google Scholar 

  15. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)

    Book  Google Scholar 

  16. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case. Arch. Ration. Mech. Anal. 201(2), 501–548 (2011)

    Article  MathSciNet  Google Scholar 

  17. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130 2, 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  19. Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)

    Article  MathSciNet  Google Scholar 

  20. Gualdani, M., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-Theorem. Mémoire de la Société Mathématique de France 153 (2017)

  21. He, L.: Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit. J. Stat. Phys. 155(1), 151–210 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. He, L.: Sharp bounds for Boltzmann and Landau collision operators. Ann. l’ENS 51(5), 1253–1341 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Hérau, F.: Short and long time behavior of the Fokker–Planck equation in a confining potential and applications. J. Funct. Anal. 244(1), 95–118 (2007)

    Article  MathSciNet  Google Scholar 

  24. Hérau, F., Karaki, Z., Tonon, D., Tristani, I.: Short time regularization estimates for the fractional Fokker–Planck equation and applications. In preparation

  25. Imbert, C., Mouhot, C.: The Schauder estimate in kinetic theory with application to a toy nonlinear model. To appear in Annales Henri Lebesgue (2020). https://hal.archives-ouvertes.fr/hal-01690354v2

  26. Imbert, C., Mouhot, C., Silvestre, L.: Decay estimates for large velocities in the boltzmann equation without cutoff. Journal de l’École Polytechnique—Mathématiques 7, 143–184 (2020)

    Article  MathSciNet  Google Scholar 

  27. Imbert, C., Silvestre, L.: The Schauder estimate for kinetic integral equations. To appear in Analysis and PDE (2020). https://arxiv.org/pdf/1812.11870.pdf

  28. Imbert, C., Silvestre, L.: Weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math.Soc. online first (2019)

  29. Klaus, M.: Boltzmann collision operator without cut-off. Helv. Phys. Acta 50(6), 893–903 (1977)

    MathSciNet  Google Scholar 

  30. Lerner, N.: The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat. Educ. 5(1), 213–236 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Lerner, N.: Some facts about the Wick calculus. In: Pseudo-differential Operators, vol. 1949 of Lecture Notes in Math., pp. 135–174. Springer, Berlin (2008)

  32. Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators. Theory and Applications, vol. 3. Birkhäuser Verlag, Basel (2010)

    Book  Google Scholar 

  33. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    ADS  Google Scholar 

  34. Mischler, S.: Semigroups in Banach spaces. in progress

  35. Mischler, S., Mouhot, C.: Exponential stability of slowly decaying solutions to the kinetic-Fokker–Planck equation. Arch. Ration. Mech. Anal. 221(2), 677–723 (2016)

    Article  MathSciNet  Google Scholar 

  36. Mouhot, C.: Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions. Commun. Partial Differ. Equ. 30 4–6, 881–917 (2005)

    Article  MathSciNet  Google Scholar 

  37. Mouhot, C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Equ. 31(7–9), 1321–1348 (2006)

    Article  MathSciNet  Google Scholar 

  38. Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261(3), 629–672 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87 5, 515–535 (2007)

    Article  MathSciNet  Google Scholar 

  41. Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I. Commun. Pure Appl. Math. 27, 407–428 (1974); ibid. 27, 559–581 (1974)

  42. Silvestre, L.: A new regularization mechanism for the Boltzmann equation without cut-off. Commun. Math. Phys. 348(1), 69–100 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Tristani, I.: Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off. J. Stat. Phys. 157(3), 474–496 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  44. Villani, C.: Fisher information estimates for Boltzmann’s collision operator. J. Math. Pures Appl. (9) 77 8, 821–837 (1998)

    Article  MathSciNet  Google Scholar 

  45. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002). https://doi.org/10.1016/S1874-5792(02)80004-0

Download references

Acknowledgements

This research has been supported by the École Normale Supérieure through the project Actions Incitatives Analyse de solutions d’équations de la théorie cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for its support and the third author thanks the ANR EFI: ANR-17-CE40-0030. The authors thank Stéphane Mischler and Kleber Carrapatoso for fruitful discussions and the anonymous referees for their careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Tonon.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Lemma 2.4

In this proof, we use Lemma 2.3-(i) and (ii) together with the following inequalities when integrating in \(x \in {\mathbb {T}}^3\),

$$\begin{aligned} \Vert u \Vert _{L^\infty ({\mathbb {T}}^3_x)} \lesssim \Vert u \Vert _{H^2 ({\mathbb {T}}^3_x)}, \quad \Vert u \Vert _{L^6 ({\mathbb {T}}^3_x)} \lesssim \Vert u \Vert _{H^1 ({\mathbb {T}}^3_x)}, \quad \Vert u \Vert _{L^3 ({\mathbb {T}}^3_x)} \lesssim \Vert u \Vert _{H^1 ({\mathbb {T}}^3_x)}.\nonumber \\ \end{aligned}$$
(A.1)

Proof of (i). We write

$$\begin{aligned} \langle Q(f,g),h \rangle _{{{\mathcal {H}}}^3_x L^2_v(m)} = \langle Q(f,g),h \rangle _{L^2_{x,v}(m)} + \sum _{1 \le |\beta | \le 3} \langle \partial ^\beta _x Q(f,g), \partial ^\beta _x h \rangle _{L^2_{x,v}(m \langle v \rangle ^{-2|\beta |s})}, \end{aligned}$$

and

$$\begin{aligned} \partial ^\beta _x Q(f,g) = \sum _{\beta _1 + \beta _2 = \beta } C_{\beta _1,\beta _2} \, Q ( \partial ^{\beta _1}_x f , \partial ^{\beta _2}_x g). \end{aligned}$$

In the following steps we will always consider \(\ell \in (\gamma +1+3/2,k-6s]\) which is possible since \(k>\gamma /2+3+8s\), \(\gamma \le 1\) and \(s \ge 0\).

Step 1. Using Lemma 2.3-(i) applied with \(\varsigma _1=\varsigma _2=s\), \(N_1=\gamma /2+2s\), \(N_2=\gamma /2\) and (A.1) we have

$$\begin{aligned} \begin{aligned}&\langle Q(f,g),h \rangle _{L^2_{x,v}(m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2+2s}m)} \, \Vert h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2}m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2+2s}m)} \, \Vert h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2}m)} \\&\qquad + \Vert f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2}m)}\, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 2.Case\(|\beta |=1\). Arguing as in the previous step,

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x h \rangle _{L^2_{x,v}(\langle v \rangle ^{-2s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _xg\Vert _{H^s_v(\langle v \rangle ^{\gamma /2}m)} \, \Vert \nabla _xh\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s}m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _xh\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \,\Vert \nabla _xg\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2}m)} \, \Vert \nabla _xh\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-2s}m)} \\&\qquad + \Vert f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)}\, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Moreover,

$$\begin{aligned} \begin{aligned}&\langle Q(\partial ^\beta _x f, g) , \partial ^\beta _x h \rangle _{L^2_{x,v}(\langle v \rangle ^{-2s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2} m)} \, \Vert \nabla _x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2} m)} \, \Vert \nabla _x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \,\Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 3.Case\(|\beta |=2\). When \(\beta _2=\beta \), we have

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x h \rangle _{L^2_{x,v}(\langle v \rangle ^{-4s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xg\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert \nabla ^2_xh\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s}m)}\\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _x^2g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xh\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xg\Vert _{L^2_{x}H^s_{v}(\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert \nabla ^2_xh\Vert _{L^2_x H^s_v (\langle v \rangle ^{\gamma /2-4s}m)}\\&\qquad + \Vert f\Vert _{H^2_x L^2_v (\langle v \rangle ^{\gamma /2-4s}m)}\, \Vert \nabla ^2_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

When \(\beta _1=\beta \), we have

$$\begin{aligned} \begin{aligned}&\langle Q(\partial ^\beta _x f, g) , \partial ^\beta _x h \rangle _{L^2_{x,v}(\langle v \rangle ^{-4s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla ^2_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )}\, \Vert g\Vert _{H^{2,s}_{x,v}(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \,\Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Finally, when \(|\beta _1|=|\beta _2|=1\), we obtain

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x h \rangle _{L^2_x L^2_v(\langle v \rangle ^{-4s}m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla _xg\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad +\Vert \nabla _x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 4. Case\(|\beta |=3\). When \(\beta _2=\beta \) we obtain

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x h \rangle _{L^2_{x,v}(\langle v \rangle ^{-6s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _x^3g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_xh\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert f\Vert _{H^2_xL^2_{v} (\langle v \rangle ^{\gamma /2-6s}m)}\, \Vert \nabla ^3_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \,\Vert \nabla ^3_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

If \(|\beta _1|=1\) and \(|\beta _2|=2\) then

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x h \rangle _{L^2_x L^2_v( \langle v \rangle ^{-6s}m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla ^2_xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla ^2_xg\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{H^2_xL^2_{v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla ^2_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)}\\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

When \(|\beta _1|=2\) and \(|\beta _2|=1\) then we get

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x h \rangle _{L^2_x L^2_v(m \langle v \rangle ^{-6s})} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla ^2_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )}\, \Vert \nabla _xg\Vert _{H^{2,s}_{x,v}(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Finally, when \(\beta _1=\beta \), it follows

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta }_x f, g ), \partial ^{\beta }_x h \rangle _{L^2_x L^2_v(m \langle v \rangle ^{-6s})} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla ^3_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^3_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^3_x f\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )}\, \Vert g\Vert _{H^{2,s}_{x,v}(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x h\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^3_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x h\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\bar{\mathbf{Y}}}} \, \Vert h\Vert _{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert h\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Proof of (ii). As in the proof of (i), we write

$$\begin{aligned} \langle Q(f,g),g \rangle _{{{\mathcal {H}}}^3_x L^2_v(m)} = \langle Q(f,g),g \rangle _{L^2_{x,v}(m)} + \sum _{1 \le |\beta | \le 3} \langle \partial ^\beta _x Q(f,g), \partial ^\beta _x g \rangle _{L^2_{x,v}(m \langle v \rangle ^{-2|\beta |s})}, \end{aligned}$$

and

$$\begin{aligned} \partial ^\beta _x Q(f,g) = \sum _{\beta _1 + \beta _2 = \beta } C_{\beta _1,\beta _2} \, Q ( \partial ^{\beta _1}_x f , \partial ^{\beta _2}_x g). \end{aligned}$$

In the following steps, we will always consider \(\ell \in (4-\gamma +3/2,k-6s]\). Notice that since \(\gamma \le 1\) and \(s \le 1/2\), the condition \(k>4-\gamma +3/2+6s\) implies \(k>\gamma /2+3+8s\) so that we can apply results from Lemma 2.3.

Step 1. Using Lemma 2.3-(ii) and (A.1), we have

$$\begin{aligned} \begin{aligned}&\langle Q(f,g),g \rangle _{L^2_{x,v}(m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \left( \Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert ^2_{H^{s,*}_v(m)} + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2}m)}\right) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert ^2_{L^2_{x}H^{s,*}_v(m)} + \Vert f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2}m)}\, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}^*} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 2.Case\(|\beta |=1\). Arguing as in the previous step,

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x g \rangle _{L^2_{x,v}(\langle v \rangle ^{-2s} m)} \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _xg\Vert ^2_{H^{s,*}_v(\langle v \rangle ^{-2s} m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _xg\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _xg\Vert ^2_{L^2_xH^{s,*}_v(\langle v \rangle ^{-2s} m)} \\&\qquad +\Vert f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)}\, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}^*} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Moreover, we also have using Lemma 2.3-(i),

$$\begin{aligned} \begin{aligned}&\langle Q(\partial ^\beta _x f, g) , \partial ^\beta _x g \rangle _{L^2_{x,v}(\langle v \rangle ^{-2s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2} m)} \, \Vert \nabla _x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-2s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2} m)} \, \Vert \nabla _x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-2s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 3.Case\(|\beta |=2\). When \(\beta _2=\beta \), we have

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x g \rangle _{L^2_{x,v}(\langle v \rangle ^{-4s} m)} \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xg\Vert ^2_{H^{s,*}_v(\langle v \rangle ^{-4s} m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _x^2g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xg\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_xg\Vert ^2_{L^2_xH^{s,*}_v(\langle v \rangle ^{-4s} m)} \\&\qquad + \Vert f\Vert _{H^2_{x}L^2_v (\langle v \rangle ^{\gamma /2-4s}m)}\,\Vert \nabla ^2_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}^*} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

When \(\beta _1=\beta \), we have

$$\begin{aligned} \begin{aligned}&\langle Q(\partial ^\beta _x f, g) , \partial ^\beta _x g \rangle _{L^2_{x,v}(\langle v \rangle ^{-4s} m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla ^2_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{L^6_xL^2_v(\langle v \rangle ^\ell )}\, \Vert g\Vert _{L^3_x H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x g\Vert _{L^2_x H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \,\Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{H^1_xL^2_v(\langle v \rangle ^\ell )}\, \Vert g\Vert _{H^{1,s}_{x,v}(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Finally, when \(|\beta _1|=|\beta _2|=1\), we obtain

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x g \rangle _{L^2_x L^2_v(\langle v \rangle ^{-4s}m)} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-4s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla _xg\Vert _{L^2_x H^s_v(\langle v \rangle ^{\gamma /2-2s} m)} \, \Vert \nabla ^2_x g\Vert _{L^2_x H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-4s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Step 4. Case \(|\beta |=3\). When \(\beta _2=\beta \) we obtain

$$\begin{aligned} \begin{aligned}&\langle Q(f,\partial ^\beta _xg),\partial ^\beta _x g \rangle _{L^2_{x,v}(\langle v \rangle ^{-6s} m)} \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_xg\Vert ^2_{H^{s,*}_v(\langle v \rangle ^{-6s}m)} \\&\qquad + \Vert f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _x^3g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_xg\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)}\bigg ) \\&\quad \lesssim \Vert f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_xg\Vert ^2_{L^2_xH^{s,*}_v(\langle v \rangle ^{-6s}m)} \\&\qquad + \Vert f\Vert _{H^2_{x} L^2_{v} (\langle v \rangle ^{\gamma /2-6s}m)}\, \Vert \nabla ^3_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}^*} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

If \(|\beta _1|=1\) and \(|\beta _2|=2\) then

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x g \rangle _{L^2_x L^2_v(m \langle v \rangle ^{-6s})} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla _x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla ^2_xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla _x f\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla ^2_xg\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla _x f\Vert _{H^2_xL^2_{v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla ^2_xg\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)}\\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

When \(|\beta _1|=2\) and \(|\beta _2|=1\), we get

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta _1}_x f, \partial ^{\beta _2}_x g ), \partial ^{\beta }_x g \rangle _{L^2_x L^2_v(m \langle v \rangle ^{-6s})} \\&\quad \lesssim \int _{{\mathbb {T}}^3}\bigg (\Vert \nabla ^2_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla _x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _xg\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{L^6_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla _xg\Vert _{L^3_xH^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert \nabla ^2_x f\Vert _{H^1_xL^2_v(\langle v \rangle ^\ell )}\, \Vert \nabla _xg\Vert _{H^{1,s}_{x,v}(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^2_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert \nabla _xg\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

Finally, when \(\beta _1=\beta \), it follows

$$\begin{aligned} \begin{aligned}&\langle Q( \partial ^{\beta }_x f, g ), \partial ^{\beta }_x g \rangle _{L^2_x L^2_v(m \langle v \rangle ^{-6s})} \\&\quad \lesssim \int _{{\mathbb {T}}^3} \bigg (\Vert \nabla ^3_x f\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-4s} m)} \, \Vert \nabla ^3_x g\Vert _{H^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^3_x f\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert g\Vert _{L^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^2_x g\Vert _{L^2_v (\langle v \rangle ^{\gamma /2-6s}m)} \bigg ) \\&\quad \lesssim \Vert \nabla ^3_x f\Vert _{L^2_{x,v}(\langle v \rangle ^\ell )}\, \Vert g\Vert _{H^{2,s}_{x,v}(\langle v \rangle ^{\gamma /2-4s} m))} \, \Vert \nabla ^3_x g\Vert _{L^2_xH^s_v(\langle v \rangle ^{\gamma /2-6s} m)} \\&\qquad + \Vert \nabla ^3_x f\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \, \Vert g\Vert _{H^2_xL^2_v(\langle v \rangle ^\ell )} \, \Vert \nabla ^3_x g\Vert _{L^2_{x,v} (\langle v \rangle ^{\gamma /2-6s}m)} \\&\quad \lesssim \Vert f\Vert _{{\mathbf {X}}} \, \Vert g\Vert ^2_{{\mathbf {Y}}} + \Vert f\Vert _{{\mathbf {Y}}} \, \Vert g\Vert _{{\mathbf {X}}} \, \Vert g\Vert _{{\mathbf {Y}}}. \end{aligned} \end{aligned}$$

We conclude noticing that \(\Vert g\Vert ^2_{{\mathbf {Y}}} \lesssim \Vert g\Vert ^2_{{\mathbf {Y}}^*}\) from Lemma 2.1.

Proof of (iii). The result is immediate from (ii) and the fact that \(\Vert f\Vert ^2_{{\mathbf {Y}}} \lesssim \Vert f\Vert ^2_{{\mathbf {Y}}^*}\).

Appendix B. Cancellation Lemma and Carleman Representation

We state here two classical tools in the analysis of Boltzmann operator, the cancellation lemma and the Carleman representation. The cancellation lemma comes from [1, Lemma 1], we here state it for the kernel \(B(v-v_*, \sigma ) = b(\cos \theta ) \, |v-v_*|^\gamma \) but it can be generalized to other kernels very easily (for example, we us it with \(B_\delta (v-v_*, \sigma ) = b_\delta (\cos \theta ) \, |v-v_*|^\gamma \) in Sects. 2.2 and 4.3 of with \({\widetilde{B}}_1 (v-v_*,\sigma ) = \chi (|v'-v|) \, b(\cos \theta ) \, |v-v_*|^\gamma \) in Sect. 2.4).

Lemma B.1

(Cancellation lemma). Let f be a measurable function defined on \({\mathbb {R}}^3\). For almost every \(v \in {\mathbb {R}}^3\), we have:

$$\begin{aligned} \int _{{\mathbb {R}}^3 \times {{\mathbb {S}}}^2} B(v-v_*,\sigma ) (f'_*-f_*) \, {\mathrm{d}v}_* \, \mathrm{d}\sigma = (f *S)(v) \end{aligned}$$

where

$$\begin{aligned} S(z) := 2 \pi \, \int _0^{\pi /2} \sin \theta \, b(\cos \theta ) \left( \frac{|z|^\gamma }{\cos ^{\gamma +3} (\theta /2)} - |z|^\gamma \right) \, \mathrm{d}\theta . \end{aligned}$$

For the Carleman representation, we refer to [2] for more details on the version that we state here.

Lemma B.2

(Carleman representation). Let F be a measurable function defined on \(({\mathbb {R}}^3)^4\). For any vector \(\vartheta \in {\mathbb {R}}^3\), we denote by \(E_{0,\vartheta }\) the (hyper)vector plane orthogonal to \(\vartheta \). Then, when all sides are well defined, we have the following equality :

$$\begin{aligned}&\int _{{\mathbb {R}}^3 \times {\mathbb {S}}^2} b(\cos \theta ) |v-v_*|^\gamma F(v,v_*,v',v'_*) \, {\mathrm{d}v}_* \, \mathrm{d}\sigma \\&\quad = \int _{{\mathbb {R}}^3_\vartheta } \mathrm{d}\vartheta \int _{E_{0,\vartheta }} \mathrm{d}\alpha \, \tilde{b}(\alpha ,\vartheta )\,\mathbb {1}_{|\alpha | \ge |\vartheta |} \frac{|\alpha +\vartheta |^{\gamma +1+2s} }{|\vartheta |^{3+2s}} \,F(v,v+\alpha -\vartheta ,v-\vartheta ,v+\alpha ) \end{aligned}$$

where \(\tilde{b}(\alpha ,\vartheta )\) is bounded from above and below by positive constants and \(\tilde{b}(\alpha ,\vartheta )=\tilde{b}(\pm \alpha ,\pm \vartheta )\).

Appendix C. Pseudodifferential Tools

1.1 C.1. Pseudodifferential calculus

We first recall the definitions of the quantizations we shall use in the following. Let us consider a temperate symbol \({\sigma } \in {{\mathcal {S}}}\), we define its standard quantization \({\sigma }(v,D_v)\) for  \(f\in L^2({\mathbb {R}}^d)\) by

$$\begin{aligned} {\sigma }(v,D_v) f (v) := \frac{1}{(2\pi )^d} \int e^{iv \cdot \eta } {\sigma }(v,\eta ) \hat{f}(\eta ) \, \mathrm{d}\eta . \end{aligned}$$

The Weyl quantization is defined by

$$\begin{aligned} {\sigma }^w f (v) := \frac{1}{(2\pi )^d} \iint e^{i(v-w) \cdot \eta } {\sigma }\left( \frac{v+w}{2},\eta \right) f(w) \, \mathrm{d}\eta \, \mathrm{d}w. \end{aligned}$$

We recall that for two symbols \({\sigma }\) and \(\tau \) we have

$$\begin{aligned} {{\sigma }^w \tau ^w = ({\sigma } \sharp \tau )^w, \quad {\sigma } \sharp \tau = {\sigma }\tau + \int _0^1 (\partial _\eta {\sigma } \sharp _\theta \partial _v \tau - \partial _v {\sigma } \sharp _\theta \partial _\eta \tau ) \, \mathrm{d}\theta } \end{aligned}$$
(C.1)

where for \(V=(v,\eta )\) we have \(\sharp = \sharp _1\) and for \(\theta \in (0,1]\),

$$\begin{aligned} {\sigma } \sharp _\theta \tau (V):= \frac{1}{2i} \iint e^{-2i [V-V_1,V-V_2]/\theta } {\sigma }(V_1) \tau (V_2)\, \mathrm{d}V_1 \, \mathrm{d}V_2 /(\pi \theta )^d \end{aligned}$$

with \([V_1,V_2] = v_2\cdot \eta _1 - v_1\cdot \eta _2\) the canonical symplectic form on \({\mathbb {R}}^{2d}\). We shall also use the Wick quantization, which has very nice properties concerning positivity of operators (see [30,31,32] for more details on the subject). For this, we first introduce the Gaussian in phase variables

$$\begin{aligned} N(v,\eta ) := (2\pi )^{-d} \text {e}^{-(|v|^2+|\eta |^2)/2}. \end{aligned}$$
(C.2)

The Wick quantization is then defined by

$$\begin{aligned} {\sigma }^\mathrm{Wick}f(v) := ({\sigma } \star N )^w f(v), \end{aligned}$$
(C.3)

where \(\star \) denotes the usual convolution in \((v,\eta )\) variables. Recall that one of the main property of Wick quantization is its positivity:

$$\begin{aligned} \forall \, (v,\eta ) \in {\mathbb {R}}^6, \; {\sigma }(v,\eta )\ge 0 \Rightarrow {\sigma }^{\mathrm{Wick}}\ge 0, \end{aligned}$$
(C.4)

and that the following relation holds (see e.g. [30, Proposition 3.4]):

$$\begin{aligned}{}[ g^{\mathrm{Wick}},iv\cdot \xi ]=\{ g, v\cdot \xi \}^{\mathrm{Wick}}. \end{aligned}$$
(C.5)

The previous definitions extend to symbols in \({{\mathcal {S}}}'\) by duality.

1.2 C.2. The weak semiclassical class \(S_K(g)\)

Let \(\Gamma := |{\mathrm{d}v}|^2 + |\mathrm{d}\eta |^2\) be the flat metric on \({\mathbb {R}}^6_{v,\eta }\). The first point is to verify that the introduced symbols and weights are indeed in a suitable symbolic calculus with large parameter K uniformly in the parameter \(\xi \). For this, we first recall that a weight \(1 \le g\) is said to be temperate with respect to \(\Gamma \) if there exist \(N \ge 1\) and \(C_{N}\) such that for all \((v, \eta )\), \((v',\eta ') \in {\mathbb {R}}^6\)

$$\begin{aligned} g(v',\eta ') \le C_N \, g(v,\eta ) ( 1 + |v'-v| + |\eta '-\eta |)^N. \end{aligned}$$

We now introduce adapted classes of symbols.

Definition C.1

Let g be a temperate weight. We denote by S(g) the symbol class of all smooth functions \({\sigma }(v,\eta )\) (possibly depending on parameters K and \(\xi \)) such that

$$\begin{aligned} \left| \partial _v^\alpha \partial _\eta ^\beta {\sigma }(v,\eta ) \right| \le C_{\alpha ,\beta } g(v,\eta ) \end{aligned}$$

where for any multiindex \(\alpha \) and \(\beta \), \(C_{\alpha ,\beta }\) is uniform in K and \(\xi \). We denote also \(S_K(g)\) the symbol class of all smooth functions \({\sigma }(v,\eta )\) (possibly depending on K and \(\xi \) again) such that

$$\begin{aligned} \left| {\sigma }\right| \le C_{0,0} g \quad \text {and} \quad \forall \, |\beta | \ge 1, \quad \left| \partial _v^\alpha \partial _\eta ^\beta {\sigma } \right| \le C_{\alpha ,\beta } K^{-1/2} g \end{aligned}$$

uniformly in K and \(\xi \). Note that \(S_K(g) \subset S(g)\) and that these definitions are with respect to the flat metric.

Eventually, we shall say that a symbol \({\sigma }\) is elliptic positive in S(g) or \(S_K(g)\) if in addition \({\sigma } \ge 1\) and if there exists a constant C uniform in parameters such that we have \(C^{-1} g \le {\sigma } \le C g\).

Before focusing on the class \(S_K(g)\), we first recall one of the main results concerning the class without parameter (and without weight) S(1):

Lemma C.2

(Calderon Vaillancourt Theorem). Let \({\sigma } \in S(1)\), then \({\sigma }^w\) is a bounded operator with norm depending only on a finite number of semi-norms of \({\sigma }\) in S(1).

The classes \(S_K\) and S have standard internal properties:

Lemma C.3

For K sufficiently large, we have the following:

(i):

Let g be a temperate weight and consider \({\sigma }\) an elliptic positive symbol in \(S_K(g)\) then for all \(\nu \in {\mathbb {R}}\), \({\sigma }^\nu \in S_K(g^\nu )\);

(ii):

Let g, h be temperate weights and consider \({\sigma }\) in \(S_K(g)\), \(\tau \) in \(S_K(h)\), then \({\sigma }\tau \) is in \( S_K(g h)\).

Proof

For point a), just notice that if \({\sigma }\) is an elliptic positive symbol in \(S_K(g)\), then \({\sigma } \simeq g\) so that \({\sigma }^\nu \simeq g^\nu \). We also have directly for \(\beta \) a multiindex of length 1

$$\begin{aligned} \left| \partial _\eta ^\beta {\sigma }^\nu \right| = |\nu | {\sigma }^{\nu -1} \left| \partial _\eta ^\beta {\sigma }\right| \le C g^{\nu -1} K^{-1/2} g = C K^{-1/2} g^\nu \end{aligned}$$

using \({\sigma } \simeq g\). Estimates on higher order derivatives are straightforward.

For point b), the computation is also straightforward using the Leibniz rule. \(\square \)

Now we can quantize the previously introduced symbols. The main semiclassical idea behind the introduction of the class \(S_K\) for K large is that invertibility and powers of operators associated to symbols are direct consequences of similar properties of symbols, essentially independently of the quantization.

We first check that the class \(S_K\) is essentially stable by change of quantization.

Lemma C.4

Let g be a temperate weight and consider \(\tilde{{\sigma }}\) a positive elliptic symbol in \(S_K(g)\). We denote \({{\sigma }}\) the Weyl symbol of the operator \(\tilde{{\sigma }}(v,D_v)\) so that \({\sigma }^w = \tilde{{\sigma }}(v,D_v)\) and recall that the Weyl symbol of \({\sigma }^\mathrm{Wick}\) is \({\sigma } \star N\). Then \({\sigma }\) and \( {\sigma }\star N\) are both in \(S_K(g)\). If in addition \(\tilde{{\sigma }}\) is elliptic positive, then \({{\text {Re}}\,}{\sigma }\) and \({{\text {Re}}\,}{\sigma }\star N\) are elliptic positive.

Proof

We first prove the result for \({\sigma }\) supposing that \(\tilde{{\sigma }}\) is elliptic positive. From for e.g. [32] and an adaptation of Lemma 4.4 in [2], we know that

$$\begin{aligned} {\sigma } - \tilde{{\sigma }} \in K^{-1/2} S(g). \end{aligned}$$
(C.6)

Since \(K^{-1/2} S(g) \subset S_K(g)\), this gives that \({{\sigma }} \in S_K(g)\). If in addition \(\tilde{{\sigma }}\) is elliptic positive, then let us prove that \({{\text {Re}}\,}{\sigma }\) also is. There exist constants C, \(C'\) uniform in K large such that

$$\begin{aligned} C^{-1} g - C'K^{-1/2} g \le {{\text {Re}}\,}{{\sigma }} \le C g + C'K^{-1/2} g \end{aligned}$$

if \(C^{-1} g \le {\sigma } \le C g\). Taking K sufficiently large then gives the result.

We now deal with \({\sigma }\star N\), supposing that \({\sigma }\) is in \(S_K(g)\). For \(V=(v,\eta )\) we have

$$\begin{aligned} {\sigma }\star N (V) = \iint {\sigma }(V-W) N(W) \mathrm{d}W \end{aligned}$$

and using the temperance property of g, we get uniformly in all other possible parameters (including K)

$$\begin{aligned} \left| {\sigma }\star N(V)\right| \le \iint C g(V) (1+|W|)^N N(W) \, \mathrm{d}W \le C' g(V). \end{aligned}$$

For the derivatives, we get similarly for multiindex \(\alpha \) and \(\beta \) with \(|\beta | \ge 1\)

$$\begin{aligned} \begin{aligned} \left| \partial ^\alpha _v \partial ^\beta _\eta {\sigma }\star N (V)\right|&\le \iint \left| \partial ^\alpha _v \partial ^\beta _\eta {\sigma }(V-W)\right| N(W) \, \mathrm{d}W\\&\le C K^{-1/2} \iint g(V-W) N(W) \, \mathrm{d}W \\&\le C' K^{-1/2} \iint g(V) (1+|W|)^N N(W) \, \mathrm{d}W \\&\le C'' K^{-1/2} g(V). \end{aligned} \end{aligned}$$
(C.7)

Suppose now that in addition \(\tilde{{\sigma }}\) is elliptic positive, then \({{\text {Re}}\,}{\sigma }\) is elliptic positive and \(C^{-1} g(V) \le {{\text {Re}}\,}{\sigma }(V) \le C g(V)\) for a constant \(C>0\). Since \({{\text {Re}}\,}{\sigma }\star N\) is positive, this implies with the temperance of g that

$$\begin{aligned} c' g(V)\le & {} \iint C^{-1} C_N^{-1} g(V) (1+|W|)^{-N} N(W) \mathrm{d}W \nonumber \\\le & {} {{\text {Re}}\,}{\sigma }\star N(V) \le \iint C C_N g(V) (1+|W|)^N N(W) \mathrm{d}W = C' g(V)\nonumber \\ \end{aligned}$$
(C.8)

for some positive constants \(c'\) and \(C'\), so that \({{\text {Re}}\,}{\sigma }\star N\) is indeed elliptic positive. \(\square \)

Remark C.5

Note that using exactly the same argument as in the proof before, we also get that if \(\tau \) is a given elliptic positive symbol in \(S_K(g)\), with g a temperate weight, then \(\tau \star N\) is also an elliptic positive symbol in \(S_K(g)\).

The next technical lemma is also proven in [2]:

Lemma C.6

(Lemma 4.2 in [2]). Let g be a temperate weight and \({\sigma } \in S_K(g)\). Then for K sufficiently large (depending on a finite number of semi-norms of \({\sigma }\)), the operator \({\sigma }^w\) is invertible and there exists \(H_L\) and \(H_R\) bounded invertible operators that are close to identity as well as their inverse such that

$$\begin{aligned} ({\sigma }^w)^{-1} = H_L ({\sigma }^{-1})^w = ({\sigma }^{-1})^w H_R. \end{aligned}$$

The norms of operators \(H_L\) and \(H_R\) and their inverse can be bounded uniformly in parameters (including K).

Note that by “close to identity uniformly in parameters”, we mean that

$$\begin{aligned} \left\| H_L f\right\| \simeq \left\| H_R f\right\| \simeq \left\| f\right\| \end{aligned}$$

with constants uniform in parameters (including K sufficiently large).

Proof

The proof follows exactly the lines of the one given in [2, Lemma 4.2. i)]. \(\square \)

We now give the main Proposition that will be used in the proof of the technical Lemmas in Sect. 3.2.3.

Proposition C.7

Let g be a temperate weight and consider \({\sigma }\) an elliptic positive symbol in \(S_K(g)\). Then for K sufficiently large, we have the following

$$\begin{aligned} \left\| ({\sigma }^w)^{1/2} f\right\| \simeq \left\| ({\sigma }^{1/2})^w f\right\| \qquad \text { and } \qquad \left\| ({\sigma }^w)^{-1} f\right\| \simeq \left\| ({\sigma }^{-1})^w f\right\| . \end{aligned}$$
(C.9)

In addition, suppose that \(\tau \) is another elliptic positive symbol in \(S_K(g)\) then

$$\begin{aligned} \left\| {\sigma }^w f\right\| \simeq \left\| \tau ^w f\right\| . \end{aligned}$$
(C.10)

In particular, we have

$$\begin{aligned} \left\| {\sigma }^w f\right\| ^2 \simeq \left\| {\sigma }^\mathrm{Wick}f\right\| ^2 \simeq \left( ({\sigma }^2)^\mathrm{Wick}f,f\right) \end{aligned}$$
(C.11)

and

$$\begin{aligned} \left( {\sigma }^w f,f\right) \simeq \left( {\sigma }^\mathrm{Wick}f,f\right) \end{aligned}$$
(C.12)

uniformly in parameters (in particular K).

Proof

We first prove (C.9). For the second almost equality, we just have to notice that from Lemma C.6, we have

$$\begin{aligned} \left\| ({\sigma }^w)^{-1} f\right\| = \left\| H_L({\sigma }^{-1})^w f\right\| \simeq \left\| ({\sigma }^{-1})^w f\right\| \end{aligned}$$

since \(H_L\) is close to identity (uniformly in parameters). For the first part of (C.9), we write that

$$\begin{aligned} \begin{aligned} \left\| {\sigma }^w f\right\| ^2&= ( ({\sigma } \sharp {\sigma })^w f,f) = ( ({\sigma }^2)^w f,f) + ( r^w f,f) \end{aligned} \end{aligned}$$
(C.13)

where \(r = {\sigma }\sharp {\sigma } - {\sigma }^2 \in K^{-1/2} S(g^2)\) by standard symbolic calculus. More precisely, we can write from (C.1)

$$\begin{aligned} r = \int _0^1 (\partial _v {\sigma } \sharp _\theta \partial _\eta {\sigma } -\partial _\eta {\sigma } \sharp _\theta \partial _v {\sigma }) \, \mathrm{d}\theta \end{aligned}$$

and using that \(\partial _v {\sigma } \in S(g)\) and \(\partial _\eta {\sigma } \in K^{-1/2} S(g)\) gives the result by stability of the flat symbol class S(g). We therefore get that

$$\begin{aligned} \begin{aligned} |( r^w f,f)|&= \big | \big ( ({\sigma }^w)^{-1}r^w ({\sigma }^w)^{-1} {\sigma }^w f, {\sigma }^w f ) \big | \\&= \big | \big ( H_L ({\sigma }^{-1})^w r^w ({\sigma }^{-1})^w H_R {\sigma }^w f, {\sigma }^w f ) \big |. \end{aligned} \end{aligned}$$

Now \({\sigma }^{-1} \sharp r \sharp {\sigma }^{-1} \in K^{-1/2} S(1)\) since \({\sigma }^{-1} \in S(g)\), so that \(({\sigma }^{-1})^w r^w ({\sigma }^{-1})^w\) is a bounded operator with norm controlled by a constant times \(K^{-1/2}\). Since \(H_L\) and \(H_R\) are bounded operators independently of K, there exists a constant such that

$$\begin{aligned} |( r^w f,f)| \le C K^{-1/2}\left\| {\sigma }^w f\right\| ^2. \end{aligned}$$

This estimate and (C.13), gives that for K sufficiently large,

$$\begin{aligned} \begin{aligned} \frac{1}{2} \left\| {\sigma }^w f\right\| ^2 \le ( ({\sigma }^2)^w f,f) \le 2\left\| {\sigma }^w f\right\| ^2. \end{aligned} \end{aligned}$$
(C.14)

Taking \({\sigma }^{1/2} \in S_K(g^{1/2})\) (by Lemma C.3) instead of \({\sigma }\), we obtain

$$\begin{aligned} \begin{aligned} \left\| ({\sigma }^{1/2})^w f\right\| ^2 \simeq ( {\sigma }^w f,f)&= \left\| ({\sigma }^w)^{1/2}\right\| ^2 \end{aligned} \end{aligned}$$

and the proof of (C.9) is complete.

Concerning (C.10), we just have to prove one inequality since the result is symmetric in \(\tau \) and \({\sigma }\). For K sufficiently large, we have

$$\begin{aligned} \left\| \tau ^w f\right\|= & {} \left\| \tau ^w ({\sigma }^w)^{-1} {\sigma }^w f\right\| = \left\| \tau ^w ({\sigma }^{-1})^w H_R {\sigma }^w f\right\| \\= & {} \left\| ( \tau \sharp ({\sigma }^{-1}))^w H_R {\sigma }^w f\right\| \le C \left\| {\sigma }^w f\right\| \end{aligned}$$

since \(\tau \sharp ({\sigma }^{-1}) \in S(1)\), so that \(( \tau \sharp ({\sigma }^{-1}))^w\) is bounded (with bound independent of K). By symmetry, this proves (C.10).

We then prove (C.11). We first recall that \({\sigma }^\mathrm{Wick}= ({\sigma }\star N)^w\) and that \({\sigma }\star N\) is elliptic positive in \(S_K(g)\) by Lemma C.4. From (C.10), this directly yields

$$\begin{aligned} \left\| {\sigma }^w f\right\| \simeq \left\| ({\sigma } \star N)^w f\right\| = \left\| {\sigma }^\mathrm{Wick}f\right\| . \end{aligned}$$

By direct computation \(({\sigma }^2\star N)^{1/2}\) is also in \(S_K(g)\) by point b) of Lemma C.3 with \(\nu =2\) and \(\nu =1/2\), respectively, and Lemma C.4. Using again (C.10) and (C.9), yields that

$$\begin{aligned} \left\| {\sigma }^w f\right\|\simeq & {} \left\| (({\sigma }^2\star N)^{1/2})^w f\right\| \\\simeq & {} \left\| (({\sigma }^2\star N)^w)^{1/2} f\right\| = (({\sigma }^2\star N)^w f,f) = (({\sigma }^2)^\mathrm{Wick}f,f). \end{aligned}$$

The proof of the last point (C.12) follows exactly the same lines and we skip it. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hérau, F., Tonon, D. & Tristani, I. Regularization Estimates and Cauchy Theory for Inhomogeneous Boltzmann Equation for Hard Potentials Without Cut-Off. Commun. Math. Phys. 377, 697–771 (2020). https://doi.org/10.1007/s00220-020-03682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03682-8

Navigation