Skip to main content
Log in

Cosmological Newtonian Limits on Large Spacetime Scales

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish the existence of 1-parameter families of \({\epsilon}\)-dependent solutions to the Einstein–Euler equations with a positive cosmological constant \({\Lambda > 0}\) and a linear equation of state \({p =\epsilon^{2}{K}\rho, 0 < K \leq 1/3,}\) for the parameter values \({0 < \epsilon < \epsilon_{0}}\). These solutions exist globally on the manifold \({M = (0, 1] \times \mathbb{R}^{3}}\), are future complete, and converge as \({\epsilon \searrow 0}\) to solutions of the cosmological Poisson–Euler equations. They represent inhomogeneous, nonlinear perturbations of a FLRW fluid solution where the inhomogeneities are driven by localized matter fluctuations that evolve to good approximation according to Newtonian gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces, second ed. Academic Press Inc., Cambridge (2003)

    Google Scholar 

  2. Arfken G.B.: Mathematical Methods for Physicists, third ed.. Academic Press Inc, Cambridge (1985)

    MATH  Google Scholar 

  3. Brauer U., Rendall A., Reula O.: The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models. Classical Quantum Gravity 11, 2283 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. Browning G., Kreiss H.-O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42, 704–718 (1982)

    Article  MathSciNet  Google Scholar 

  5. Crocce M., Fosalba P., Castander F.J., Gaztañaga E.: Simulating the universe with MICE: the abundance of massive clusters. Mon. Not. R. Astron. Soc. 403, 1353–1367 (2010)

    Article  ADS  Google Scholar 

  6. Evrard A.E., MacFarland T.J., Couchman H.M.P., Colberg J.M., Yoshida N., White S.D.M., Jenkins A., Frenk C.S., Pearce F.R., Peacock J.A. et al.: Galaxy Clusters in hubble volume simulations: cosmological constraints from sky survey populations. Astrophys. J. 573, 7 (2002)

    Article  ADS  Google Scholar 

  7. Helmut F.: On the existence of n -geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)

    Article  MathSciNet  Google Scholar 

  8. Helmut F.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Differ. Geom. 34, 275–345 (1991)

    Article  MathSciNet  Google Scholar 

  9. Helmut F.: Sharp asymptotics for Einstein-\({\lambda}\)-dust flows. Commun. Math. Phys. 350, 803–844 (2017)

    Article  MathSciNet  Google Scholar 

  10. Grafakos L.: Classical Fourier Analysis, third ed. Graduate Texts in Mathematics. Springer, New York (2014)

    Google Scholar 

  11. Grafakos L.: Modern Fourier analysis, third ed., Graduate Texts in Mathematics. Springer, New York (2014)

    Google Scholar 

  12. Green S.R., Wald R.M.: Newtonian and relativistic cosmologies. Phys. Rev. D 85, 063512 (2012)

    Article  ADS  Google Scholar 

  13. Hadi M., Speck J.: The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant. J. Hyperb. Differ. Equ. 12, 87–188 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hahn O., Angulo R.E.: An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics. Mon. Not. R. Astron. Soc. 455, 1115–1133 (2016)

    Article  ADS  Google Scholar 

  15. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Klainerman S., Majda A.: Compressible and incompressible fluids. Commun. Pure.Appl.Math. 35, 629–651 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. Koch, H.: Hyperbolic equations of second order. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (1990)

  18. Kreiss H.O.: Problems with different time scales for partial differential equations. Commun. Pure Appl. Math. 33, 399–439 (1980)

    Article  MathSciNet  Google Scholar 

  19. LeFloch, P.G., Wei, C.: The Global Nonlinear Stability of Self-gravitating Irrotational Chaplygin Fluids in a FRW Geometry. arXiv:1512.03754

  20. Liu, C., Oliynyk, T.A.: Newtonian limits of isolated cosmological systems on long time scales. Ann. Henri Poincaré 19, 2157–2243 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lottermoser M.: A convergent post-Newtonian approximation for the constraint equations in general relativity. Ann. l’ I.H.P. Phys. Thorique 57, 279–317 (1992) (eng)

    MathSciNet  MATH  Google Scholar 

  22. Lübbe C., AntonioValiente Kroon J.: A conformal approach for the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1–25 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci. 53, 30–51 (2012)

    Article  Google Scholar 

  24. Oliynyk T.A.: An existence proof for the gravitating BPS monopole. Ann. Henri Poincaré 7, 199–232 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Oliynyk T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131–188 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Oliynyk T.A.: Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288, 847–886 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Oliynyk T.A.: Cosmological post-Newtonian expansions to arbitrary order. Commun. Math. Phys. 295, 431–463 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Oliynyk T.A.: A rigorous formulation of the cosmological Newtonian limit without averaging. J. Hyperb. Differ. Equ. 7, 405–431 (2010)

    Article  MathSciNet  Google Scholar 

  29. Oliynyk T.A.: The fast Newtonian limit for perfect fluids. Adv. Theor. Math. Phys. 16, 359–391 (2012)

    Article  MathSciNet  Google Scholar 

  30. Oliynyk T.A.: Cosmological Newtonian limit. Phys. Rev. D 89, 124002 (2014)

    Article  ADS  Google Scholar 

  31. Oliynyk T.A.: The Newtonian limit on cosmological scales. Commun. Math. Phys. 339, 455–512 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Oliynyk T.A.: Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant. Commun. Math. Phys. 346, 293–312 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Oliynyk, T.A., Robertson, C.: Linear cosmological perturbations on large scales via post-Newtonian expansions (in preparation)

  34. Ringström H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173, 123 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rodnianski I., Speck J.: The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant. J. Eur. Math. Soc. 15, 2369–2462 (2013)

    Article  MathSciNet  Google Scholar 

  36. Speck J.: The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant. Sel. Math. 18, 633–715 (2012)

    Article  MathSciNet  Google Scholar 

  37. Springel V.: The Cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005)

    Article  ADS  Google Scholar 

  38. Springel V., White S.D.M., Jenkins A., Frenk C.S., Yoshida N., Gao L., Navarro J., Thacker R., Croton D., Helly J., Peacock J.A., Cole S., Thomas P., Couchman H., Evrard A., Colberg J., Pearce F.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  ADS  Google Scholar 

  39. Stein E.M.: Singular Integrals and Differentiability Properties of Functions, Monographs in Harmonic Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  40. Taylor M.E.: Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences. Springer, New York (2010)

    Google Scholar 

  41. Teyssier R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ARC Grant FT120100045 and a Senior Scholarship from the Australia-American Fulbright Commission. Part of this work was completed during visits by the first author to the Erwin Schrdinger International Institute for Mathematics and Physics (ESI), the Max Planck Institute for Gravitational Physics (AEI) and the School of Mathematical Sciences at Xiamen University, and by the second author to the Mathematics Department at Princeton University. They are grateful for the support and hospitality during their visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Communicated by P. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Oliynyk, T.A. Cosmological Newtonian Limits on Large Spacetime Scales. Commun. Math. Phys. 364, 1195–1304 (2018). https://doi.org/10.1007/s00220-018-3214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3214-9

Navigation