Skip to main content
Log in

Universal Edge Transport in Interacting Hall Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the edge transport properties of 2d interacting Hall systems, displaying single-mode chiral edge currents. For this class of many-body lattice models, including for instance the interacting Haldane model, we prove the quantization of the edge charge conductance and the bulk-edge correspondence. Instead, the edge Drude weight and the edge susceptibility are interaction-dependent; nevertheless, they satisfy exact universal scaling relations, in agreement with the chiral Luttinger liquid theory. Moreover, charge and spin excitations differ in their velocities, giving rise to the spin–charge separation phenomenon. The analysis is based on exact renormalization group methods, and on a combination of lattice and emergent Ward identities. The invariance of the emergent chiral anomaly under the renormalization group flow plays a crucial role in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler S.L., Bardeen W.A.: Absence of higher-order corrections in the anomalous axial-vector divergence equation. Phys. Rev. 182, 1517 (1969)

    Article  ADS  Google Scholar 

  2. Aizenman, M., Warzel, S.: Random Operators. Disorder Effects on Quantum Spectra and Dynamics. Graduate Studies in Mathematics, vol. 168, Americal Mathematical Society, Providence (2015).

  3. Avron J.E., Seiler R., Simon B.: Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51, 51 (1983)

    Article  ADS  Google Scholar 

  4. Bachmann S., Bols A., De Roeck W., Fraas M.: Quantization of conductance in gapped interacting systems. Ann. Henri Poincaré 19, 695–708 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benfatto G., Falco P., Mastropietro V.: Extended scaling relations for planar lattice models. Commun. Math. Phys. 292, 569–605 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benfatto G., Falco P., Mastropietro V.: Universality of one-dimensional fermi systems, I. Response functions and critical exponents. Commun. Math. Phys. 330, 153–215 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Benfatto G., Falco P., Mastropietro V.: Universality of one-dimensional fermi systems, II. The Luttinger liquid structure. Commun. Math. Phys. 330, 217–282 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Benfatto G., Mastropietro V.: Drude weight in non solvable quantum spin chains. J. Stat. Phys. 143, 251–260 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Benfatto G., Mastropietro V.: Universality relations in non-solvable quantum spin chains. J. Stat. Phys. 138, 1084–1108 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Benfatto G., Mastropietro V.: Renormalization group, hidden symmetries and approximate Ward identities in the XYZ model. Rev. Math. Phys. 13, 1323–1435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benfatto G., Mastropietro V.: Ward identities and chiral anomaly in the luttinger liquid. Commun. Math. Phys. 258, 609–655 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics. 2nd edn, Springer, Berlin (1997).

  13. Brydges, D.C.: A short course on cluster expansions. In: Phénomènes critiques, systèmes aléatoires, théories de jauge, (Les Houches, 1984), pp. 129-183. North-Holland, Amsterdam (1986).

  14. Chang A.M.: Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Coleman S., Hill B.: No more corrections to the topological mass term in QED3. Phys. Lett. B. 159, 184 (1985)

    Article  ADS  Google Scholar 

  16. Elbau P., Graf G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Elgart A., Graf G.M., Schenker J.H.: Equality of the bulk and edge hall conductances in a mobility gap. Commun. Math. Phys. 259, 185–221 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Falco P., Mastropietro V.: Renormalization group and asymptotic spin–charge separation for chiral luttinger liquids. J. Stat. Phys. 131, 79–116 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fröhlich J., Kerler T.: Universality in quantum Hall systems. Nucl. Phys. B. 354, 369–417 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fröhlich J., Studer U.M.: Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys. 65, 733 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fröhlich, J., Studer, U.M., Thiran, E.: Quantum Theory of Large Systems of Non-Relativistic Matter. cond-mat/9508062.

  22. Giuliani, A.: Order, disorder and phase transitions in quantum many body systems. arXiv:1711.06991

  23. Giuliani A., Mastropietro V.: The two-dimensional hubbard model on the honeycomb lattice. Commun. Math. Phys. 293, 301–346 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Giuliani A., Mastropietro V., Toninelli F.: Height fluctuations in interacting dimers. Ann. Inst. H. Poincaré Probab. Statist. 53, 98–168 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Giuliani A., Mastropietro V., Toninelli F.: Haldane relation for interacting dimers. J. Stat. Mech. Theor. Exp. 2017, 034002 (2017)

    Article  MathSciNet  Google Scholar 

  26. Giuliani A., Mastropietro V., Porta M.: Universality of conductivity in interacting graphene. Commun. Math. Phys. 311, 317–355 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Giuliani A., Mastropietro V., Porta M.: Universality of the Hall conductivity in interacting electron systems. Commun. Math. Phys. 349, 1107–1161 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Giuliani A., Jauslin I., Mastropietro V., Porta M.: Topological phase transitions and universality in the Haldane–Hubbard model. Phys. Rev. B 94, 205139 (2016)

    Article  ADS  Google Scholar 

  29. Giuliani, A., Mastropietro, V., Porta, M.: Quantization of the interacting Hall conductivity in the critical regime. arXiv:1803.11213

  30. Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Graf G.M., Tauber C.: Bulk-edge correspondence for two-dimensional Floquet topological insulators. Ann. Henri Poincaré 19, 709–741 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haldane F.D.M.: Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett 61, 2015 (1988)

    Article  ADS  Google Scholar 

  33. Haldane F.D.M.: “Luttinger liquid theory” of one-dimensional quantum fluids. J. Phys. C Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  34. Halperin B.I.: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. Lett. 25, 2185 (1982)

    ADS  Google Scholar 

  35. Hao. N., et al.: Topological edge states and quantum Hall effect in the Haldane model. Phys. Rev. B 78, 075438 (2008).

  36. Hasan M.Z., Kane C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  37. Hastings M.B., Michalakis S.: Quantization of hall conductance for interacting electrons on a torus. Commun. Math. Phys. 334, 433–471 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hastings, M.B.: The stability of free fermi hamiltonians. arXiv:1706.02270

  39. Hatsugai Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Hohenadler M., Assaad F.F.: Correlation effects in two-dimensional topological insulators. J. Phys. Condens. Matter 25, 143201 (2013)

    Article  ADS  Google Scholar 

  41. Kane, C.L., Fisher, M.P.A.: Edge-state transport. In: Das Sarma S., Pinczuk A. (eds.) Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures. Wiley, Hoboken (2007)

  42. Kane C.L., Mele E.J.: \({\mathbb{Z}_{2}}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  43. Laughlin R.B.: Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632(R) (1981)

    Article  ADS  Google Scholar 

  44. Ishikawa K., Matsuyama T.: Magnetic field induced multi-component QED3 and quantum hall effect. Z. Phys. C 33, 41–45 (1986)

    Article  ADS  Google Scholar 

  45. Mastropietro V.: Non perturbative Adler–Bardeen theorem. J. Math. Phys. 48, 022302 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Mastropietro, V., Porta, M.: Canonical drude weight for non-integrable quantum spin chains. J. Stat. Phys. (2018). https://doi.org/10.1007/s10955-018-1994-0

  47. Mastropietro V., Porta M.: Spin Hall insulators beyond the helical Luttinger model. Phys. Rev. B 96, 245135 (2017)

    Article  ADS  Google Scholar 

  48. Mattis D.C., Lieb E.H.: Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 6, 304–312 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  49. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators. From K-Theory to Physics. Mathematical Physics Studies, Springer, Berlin (2016).

  50. Qi X.-L., Zhang S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  51. Schulz-Baldes H., Kellendonk J., Richter T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A Math. Gen. 33, L27 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Sirker J., Pereira R.G., Affleck I.: Conservation laws, integrability, and transport in one-dimensional quantum systems. Phys. Rev. B 83, 035115 (2011)

    Article  ADS  Google Scholar 

  53. Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  54. Wen X.G.: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Porta.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antinucci, G., Mastropietro, V. & Porta, M. Universal Edge Transport in Interacting Hall Systems. Commun. Math. Phys. 362, 295–359 (2018). https://doi.org/10.1007/s00220-018-3192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3192-y

Navigation