Skip to main content
Log in

The Complete Set of Infinite Volume Ground States for Kitaev’s Abelian Quantum Double Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the set of infinite volume ground states of Kitaev’s quantum double model on \({\mathbb{Z}^2}\) for an arbitrary finite abelian group G. It is known that these models have a unique frustration-free ground state. Here we drop the requirement of frustration freeness, and classify the full set of ground states. We show that the set of ground states decomposes into \({|G|^2}\) different charged sectors, corresponding to the different types of abelian anyons (also known as superselection sectors). In particular, all pure ground states are equivalent to ground states that can be interpreted as describing a single excitation. Our proof proceeds by showing that each ground state can be obtained as the weak* limit of finite volume ground states of the quantum double model with suitable boundary terms. The boundary terms allow for states that represent a pair of excitations, with one excitation in the bulk and one pinned to the boundary, to be included in the ground state space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alicki R., Fannes M., Horodecki M.: A statistical mechanics view on Kitaev’s proposal of quantum memories. J. Phys. A 40(24), 6451–6467 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Araki H., Matsui T.: Ground states of the XY-model. Commun. Math. Phys. 101, 213–245 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Arovas D., Schrieffer J.R., Wilczek F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)

    Article  ADS  Google Scholar 

  4. Bachmann, S.: Local disorder, topological ground state degeneracy and entanglement entropy, and discrete anyons. Rev. Math. Phys. 29, 1750018 (2017)

  5. Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic equicalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2012)

    Article  ADS  MATH  Google Scholar 

  6. Bachmann S., Ogata Y.: C 1-classification of gapped parent Hamiltonians of quantum spin chains. Commun. Math. Phys. 338, 1011–1042 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bais, F.A., van Driel, P., De Wild Propitius, M.: Anyons in discrete gauge theories with Chern–Simons terms. Nucl. Phys. B. 393, 547–570 (1993)

  8. Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors (University Lecture Series 21). American Mathematical Society, Providence, RI (2001)

  9. Beigi S., Shor P.W., Whalen D.: The quantum double model with boundary: condensations and symmetries. Commun. Math. Phys. 306, 663–694 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bombin H., Martin-Delgado M.A.: A family of non-abelian Kitaev models on the lattice: topological condensation and confinement. Phys. Rev. B. 78, 115421 (2008)

    Article  ADS  Google Scholar 

  11. Bonderson P., Shtengel K., Slingerland J.K.: Interferometry of non-abelian anyons. Ann. Phys. 323, 2709–2755 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Brandão F.G.S.L., Horodecki M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333, 761 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bratteli O., Kishimoto A., Robinson D.: Ground states of infinite quantum spin systems. Commun. Math. Phys. 64, 41–48 (1978)

    Article  ADS  MATH  Google Scholar 

  14. Bratteli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 1 and 2. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  15. Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bravyi, S., Kitaev, A.: Quantum codes on a lattice with boundary (1998). arXiv:quant-ph/9811052v1

  17. Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 84, 155138 (2011)

    Google Scholar 

  18. Dijkgraaf R., Pasquier V., Roche P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys. B. Proc. Suppl. 18, 60–72 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  20. Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states of quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fannes M., Werner R.F.: Boundary conditions for quantum lattice systems. Helv. Phys. Acta 68, 635–657 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Fiedler L., Naaijkens P.: Haag duality for Kitaev’s quantum double model for abelian groups. Rev. Math. Phys. 27, 1550021 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras. Commun. Math. Phys. 125, 201–226 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Freedman M.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 95, 98–101 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Freedman M., Meyer D.A.: Projective plane and planar quantum codes. Found. Comput. Math. 1, 325–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fröhlich J., Gabbiani F.: Braid statistics in local quantum theory. Rev. Math. Phys. 2, 251–353 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gottstein, C.T., Werner, R.F.: Ground states of the q-deformed Heisenberg ferromagnet (1995). arXiv:cond-mat/9501123

  29. Haag R.: Local Quantum Physics: Fields, Particles, Algebras, Texts and Monographs in Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  30. Haag R., Hugenholtz N.M., Winnink M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Haah J.: An invariant of topologically ordered states under local unitary transformations. Commun. Math. Phys. 342, 771–801 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)

    MathSciNet  Google Scholar 

  33. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Koma T., Nachtergaele B.: The complete set of ground states of the ferromagnetic XXZ chains. Adv. Theor. Math. Phys. 2, 533–558 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Matsui T.: On ground states of the one-dimensional ferromagnetic XXZ chain. Lett. Math. Phys. 37, 397–403 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Moore G., Read N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. Naaijkens P.: Localized endomorphisms in Kitaev’s toric code on the plane. Rev. Math. Phys. 23, 347–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Naaijkens, P.: Kitaev’s quantum double model from a local quantum physics point of view. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory, pp. 365–395. Springer, Berlin (2015)

  42. Nachtergaele B., Ogata Y., Sims R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nachtergaele B., Sims R.: Lieb–Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ogata Y.: A class of asymmetric gapped Hamiltonians on quantum spin chains and its characterization I. Commun. Math. Phys. 348, 847–895 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ogata Y.: A class of asymmetric gapped Hamiltonians on quantum spin chains and its characterization II. Commun. Math. Phys. 348, 897–957 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ogata Y.: A class of asymmetric gapped Hamiltonians on quantum spin chains and its characterization III. Commun. Math. Phys. 352, 1205–1263 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I: Functional Analysis, Revised and Enlarged edition. Academic Press (1980)

  48. Szlachányi K., Vecsernyés P.: Quantum symmetry and braid group statistics in G-spin models. Commun. Math. Phys. 156, 127–168 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wen X.-G.: Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. Lett. B 40, 7387–7390 (1989)

    Article  ADS  Google Scholar 

  50. Wilczek F.: Fractional Statistics and Anyon Superconductivity. 2nd edn.World Scientific Publishing Co., Inc., Teaneck (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Naaijkens.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

Dedicated to the memory of Rudolf Haag

2017 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, M., Naaijkens, P. & Nachtergaele, B. The Complete Set of Infinite Volume Ground States for Kitaev’s Abelian Quantum Double Models. Commun. Math. Phys. 357, 125–157 (2018). https://doi.org/10.1007/s00220-017-2989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2989-4

Navigation