Skip to main content
Log in

Quantum Physics, Fields and Closed Timelike Curves: The D-CTC Condition in Quantum Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The D-CTC condition has originally been proposed by David Deutsch as a condition on states of a quantum communication network that contains “backward time-steps” in some of its branches. It has been argued that this is an analogue for quantum processes in the presence of closed timelike curves (CTCs). The unusual properties of states of quantum communication networks that fulfill the D-CTC condition have been discussed extensively in recent literature. In this work, the D-CTC condition is investigated in the framework of quantum field theory in the local, operator-algebraic approach due to Haag and Kastler. It is shown that the D-CTC condition cannot be fulfilled in states that are analytic in the energy, or satisfy the Reeh–Schlieder property, for a certain class of processes and initial conditions. On the other hand, if a quantum field theory admits sufficiently many uncorrelated states across acausally related spacetime regions (as implied by the split property), then the D-CTC condition can always be fulfilled approximately to arbitrary precision. As this result pertains to quantum field theory on globally hyperbolic spacetimes where CTCs are absent, one may conclude that interpreting the D-CTC condition as characteristic for quantum processes in the presence of CTCs could be misleading, and should be regarded with caution. Furthermore, a construction of the quantized massless Klein–Gordon field on the Politzer spacetime, often viewed as spacetime analogue for quantum communication networks with backward time-steps, is proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn D., Myers C.R., Ralph T.C., Mann R.B.: Quantum state cloning in the presence of a closed timelike curve. Phys. Rev. A 88, 022332 (2013)

    Article  ADS  Google Scholar 

  2. Avis S.J., Isham C.J., Storey D.: Quantum field theory in Anti-de Sitter spacetime. Phys. Rev. D 18, 3565 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bogoliubov N.N., Logunov A.A., Oksak A.I., Todorov I.: General Principles of Quantum Field Theory. Kluwer, Dordrecht(NL) (1990)

    Book  MATH  Google Scholar 

  5. Borchers H.-J.: Über die Vollständigkeit lorentzinvarianter Felder in einer zeitartigen Röhre. Nuovo Cim. 19, 787 (1961)

    Article  ADS  MATH  Google Scholar 

  6. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, Vol. 1. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  7. Brun T.A., Wilde M.M., Winter A.: Quantum state cloning using Deutschian closed timelike curves. Phys. Rev. Lett. 111, 190401 (2013)

    Article  ADS  Google Scholar 

  8. Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.): Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015)

  9. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bub J., Stairs A.: Quantum interactions with closed timelike curves and superluminal signalling. Phys. Rev. A 89, 022311 (2014)

    Article  ADS  Google Scholar 

  11. Buchholz D.: Product states for local algebras. Commun. Math. Phys. 36, 287 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Buchholz D., Florig M., Summers S.J.: Hawking-Unruh temperature and Einstein causality in anti-de Sitter space-time. Class. Quant. Grav. 17, L31–L37 (2000)

    Article  ADS  MATH  Google Scholar 

  13. Buchholz D., Wichmann E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chamblin A., Gibbons G.W., Steif A.R.: Kinks and time machines. Phys. Rev. D 50, R2353–R2355 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. Clifton R., Halvorson H.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Antoni C., Hollands S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Commun. Math. Phys. 261, 133–159 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Deutsch D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dunlap L.: The metaphysics of D-CTCs: on the underlying assumptions of Deutsch’s quantum solution to the paradoxes of time travel. Stud. Hist. Philos. Sci. B 56, 39–47 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Earman J., Smeenk C., Wuethrich C.: Do the laws of physics forbid the construction of time machines?. Synthese 169, 91–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fewster C.J.: The split property for locally covariant quantum field theories in curved spacetime. Lett. Math. Phys. 105(12), 1633–1661 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fewster C.J., Higuchi A.: Quantum field theory on certain nonglobally hyperbolic space-times. Class. Quantum Grav. 13, 51–62 (1996)

    Article  ADS  MATH  Google Scholar 

  23. Fewster C.J., Higuchi A., Wells C.G.: Classical and quantum initial value problems for models of chronology violation. Phys. Rev. D 54, 3806–3825 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fewster C.J., Verch R.: Stability of quantum systems at three scales: Passivity, quantum weak energy inequalities and the microlocal spectrum condition. Commun. Math. Phys. 240, 329–375 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.), Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015) (arXiv:1504.00586 [math-ph])

  26. Fewster C.J., Verch R.: The necessity of the Hadamard condition. Class. Quantum Grav. 30, 235027 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fredenhagen K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 127, 79–89 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Friedman J.L, Morris M.S.: Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves. Commun. Math. Phys. 186, 495–529 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Furlani E.P.: Quantization of massive vector fields on ultrastatic spacetimes. Class. Quantum Grav. 14, 1665–1677 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Goldwirth D.S., Perry M.J., Piran T., Thorne K.S.: The quantum propagator for a non-relativistic particle in the vicinity of a time machine. Phys. Rev. D 49, 3951–3957 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  31. Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Haag R.: Local Quantum Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  34. Haag R.: Irreversibility introduced on a fundamental level. Commun. Math. Phys. 123, 245–252 (1990)

    Article  ADS  MATH  Google Scholar 

  35. Haag R.: A thought on the synthesis of quantum physics and general relativity and the role of space-time. Nucl. Phys. B 18, 135–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Haag R.: An evolutionary picture for quantum physics. Commun. Math. Phys. 180, 733–743 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Haag R., Narnhofer H., Stein U.: On quantum field theory in gravitational background. Commun. Math. Phys. 94, 219–238 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hawking S.W.: The chronology protection conjecture. Phys. Rev. D. D46, 603–611 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hollands S., Wald R.M.: Quantum fields in curved spacetime. Phys. Rept. 574, 1–35 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Jin W.M.: Quantization of Dirac fields in static spacetime. Class. Quantum Grav. 17, 2949–2964 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kay B.S.: Linear spin 0 quantum fields in external gravitational and scalar fields. 1. A one-particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  42. Kay, B.S.: The principle of locality and quantum field theory on (non-globally hyperbolic) curved space-times, Rev. Math. Phys. Special Issue, 167–195 (1992)

  43. Kay B.S., Radzikowski M.J., Wald R.M.: Quantum field theory on space-times with a compactly generated Cauchy horizon. Commun. Math. Phys. 183, 533–556 (1997)

    Article  ADS  MATH  Google Scholar 

  44. Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015) (arXiv:1412.5945 [math-ph])

  45. Lechner G., Verch R.: Linear hyperbolic PDEs with non-commutative time. J. Noncommut. Geom. 9, 999–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y.: Quantum mechanics of time travel through post-selected teleportation. Phys. Rev. D 84, 025007 (2011)

    Article  ADS  Google Scholar 

  47. Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y., Pirandola S., Rozema L.A., Darabi A., Soudagar Y., Shalm L.K., Steinberg A.M.: Closed timelike curves via postselection: theory and experimental test of consistency. Phys. Rev. Lett. 106, 040403 (2011)

    Article  ADS  Google Scholar 

  48. Longo R., Rehren K.-H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 567–598 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Longo R., Morinelli V., Rehren K.-H.: Where infinite spin particles are localizable. Commun. Math. Phys. 345, 587–614 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Pienaar J.L., Ralph T.C., Myers C.R.: Open timelike curves violate Heisenberg’s uncertainty principle. Phys. Rev. Lett. 110, 060501 (2013)

    Article  ADS  Google Scholar 

  51. Politzer H.D.: Simple quantum systems with closed timelike curves. Phys. Rev. D 46, 44704476 (1992)

    Article  MathSciNet  Google Scholar 

  52. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory in curved spacetime. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1975)

    MATH  Google Scholar 

  54. Reeh H., Schlieder S.: Bermerkungen zur Unitäräquivalenz von Lorentz-invarianten Feldern. Nouvo Cimento 22, 1051–1068 (1961)

    Article  ADS  MATH  Google Scholar 

  55. Rehren K.-H.: Algebraic holography. Annales Henri Poincaré 1, 607–623 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ringbauer M., Broome M.A., Myers C.R., White A.G., Ralph T.C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, 4145 (2014)

    Article  ADS  Google Scholar 

  57. Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Sanders K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485–501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That, Revised Edition, Princeton Landmarks in Physics, Princeton, (2000)

  60. Strohmaier A.: The Reeh–Schlieder theorem for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: analytic wavefront sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Summers S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  63. Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507–536 (1994)

    Article  ADS  MATH  Google Scholar 

  64. Verch R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Verch R.: Nuclearity, split property and duality for the Klein–Gordon field in curves space-time. Lett. Math. Phys. 29, 297–310 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Verch, R.: Scaling algebras, the renormalization group and the principle of local stability in algebraic quantum field theory. In: Proceedings of the Conference on Operator Algebras and Quantum Field Theory, Rome, Italy, 1–6 July 1996. International Press (1996)

  67. Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved space-time. Rev. Math. Phys. 9, 635–674 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. Verch R., Werner R.F.: Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wald R.M.: General Relativity. University of Chicago Press, Chicago, IL (1984)

    Book  MATH  Google Scholar 

  70. Wald R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago, IL (1992)

    MATH  Google Scholar 

  71. Wollenberg, M.: Scaling limits and type of local algebras over curved space-time, In: W.B. Arveson, et al. (eds.) Operator algebras and topology. Proceedings, Craiova, 1989, Pitman Research Notes in Mathematics Series, Vol. 270, pp. 179–196. Longman Sci. Tech., Harlow (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Verch.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

Dedicated to the memory of Rudolf Haag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolksdorf, J., Verch, R. Quantum Physics, Fields and Closed Timelike Curves: The D-CTC Condition in Quantum Field Theory. Commun. Math. Phys. 357, 319–351 (2018). https://doi.org/10.1007/s00220-017-2943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2943-5

Navigation