Skip to main content
Log in

Quantitative Quantum Ergodicity and the Nodal Domains of Hecke–Maass Cusp Forms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a quantitative statement of the quantum ergodicity for Hecke–Maass cusp forms on the modular surface. As an application of our result, along a density 1 subsequence of even Hecke–Maass cusp forms, we obtain a sharp lower bound for the L 2-norm of the restriction to a fixed compact geodesic segment of \({\eta=\{iy : y > 0\} \subset {\mathbb{H}}}\). We also obtain an upper bound of \({O_\epsilon\left(t_\phi^{3/8+\epsilon} \right)}\) for the \({L^\infty}\) norm along a density 1 subsequence of Hecke–Maass cusp forms; for such forms, this is an improvement over the upper bound of \({O_\epsilon\left(t_\phi^{5/12+\epsilon} \right)}\) given by Iwaniec and Sarnak. In a recent work of Ghosh, Reznikov, and Sarnak, the authors proved for all even Hecke–Maass forms that the number of nodal domains, which intersect a geodesic segment of \({\eta}\), grows faster than \({t_\phi^{1/12-\epsilon}}\) for any \({\epsilon > 0}\), under the assumption that the Lindelöf Hypothesis is true and that the geodesic segment is long enough. Upon removing a density zero subset of even Hecke–Maass forms, we prove without making any assumptions that the number of nodal domains grows faster than \({t_\phi^{1/8-\epsilon}}\) for any \({\epsilon > 0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogomolny E., Schmit C.: Percolation model for nodal domains of chaotic wave functions. Phys. Rev. Lett. 88, 114102 (2002)

    Article  ADS  Google Scholar 

  2. Bump D.: Automorphic forms and representations, vol. 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  3. Burq N.: Quantum ergodicity of boundary values of eigenfunctions: a control theory approach. Can. Math. Bull. 48(1), 3–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christianson H., Toth J.A., Zelditch S.: Quantum ergodic restriction for Cauchy data: interior que and restricted que. Math. Res. Lett. 20(3), 465–475 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dunster T.M.: Conical functions with one or both parameters large. Proc. R. Soc. Edinburgh Sect. A. 119(3-4), 311–327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyatlov S., Zworski M.: Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity 26(1), 35–52 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms. vol. I. McGraw-Hill Book Company, Inc., New York, Toronto, London [Based, in part, on notes left by Harry Bateman (1954)]

  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. vol. II. In: Robert, E. (ed.). Krieger Publishing Co., Inc., Melbourne (1981) (Based on notes left by Harry Bateman, Reprint of the 1953 original)

  9. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. eighth edition. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition [MR2360010], 8th edn. Elsevier/Academic Press, Amsterdam (2015)

  10. Ghosh A., Reznikov A., Sarnak P.: Nodal domains of Maass forms I. Geom. Funct. Anal. 23(5), 1515–1568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffstein, J., Lockhart, P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140(1), 161–181 (1994) (With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman)

  12. Hezari H., Rivière G.: L p norms, nodal sets, and quantum ergodicity. Adv. Math. 290, 938–966 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hassell A., Zelditch S.: Quantum ergodicity of boundary values of eigenfunctions. Commun. Math. Phys. 248(1), 119–168 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Iwaniec H., Kowalski E.: Analytic number theory, vol. 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (2004)

    Google Scholar 

  15. Iwaniec H., Sarnak P.: \({L^\infty}\) norms of eigenfunctions of arithmetic surfaces. Ann. Math. 141(2), 301–320 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwaniec H.: Small eigenvalues of Laplacian for \({\Gamma_0(N)}\). Acta Arith. 56(1), 65–82 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Jakobson D.: Equidistribution of cusp forms on \({{{\rm PSL}}_2({\mathbf{Z}})\backslash {{\rm PSL}}_2({\mathbf{R}})}\). Ann. Inst. Fourier (Grenoble) 47(3), 967–984 (1997)

    Article  MathSciNet  Google Scholar 

  18. Jang, S., Jung, J.: Quantum unique ergodicity and the number of nodal domains of eigenfunctions (2015). arXiv:1505.02548 [math.SP]

  19. Jacquet, H., Langlands, R.P.: Automorphic forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin, New York (1970)

  20. Jutila M.: The spectral mean square of Hecke L-functions on the critical line. Publ. Inst. Math. (Beograd) (N.S.) 76(90), 41–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jung J., Zelditch S.: Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution. J. Differ. Geom. 102(1), 37–66 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kuznecov N.V.: The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums. Mat. Sb. (N.S.) 111((153)(3)), 334–383, 479 (1980)

    MathSciNet  Google Scholar 

  23. Lewy H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Comm. Partial Differ. Equations 2(12), 1233–1244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163(1), 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, W.Z., Sarnak, P.: Quantum ergodicity of eigenfunctions on. Inst. Hautes Études Sci. Publ. Math. (81), 207–237 (1995)

  26. Luo, W., Sarnak, P.: Mass equidistribution for Hecke eigenforms. Comm. Pure Appl. Math. 56(7), 874–891 (2003) (Dedicated to the memory of Jürgen K. Moser)

  27. Luo W., Sarnak P.: Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. 37(5), 769–799 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131(5), 1337–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schubert R.: Upper bounds on the rate of quantum ergodicity. Ann. Henri Poincaré 7(6), 1085–1098 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shimura G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31(1), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Soundararajan K.: Quantum unique ergodicity for \({{{\rm SL}}_2({\mathbb{Z}}) \backslash{\mathbb{H}}}\). Ann. Math. 172(2), 1529–1538 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Stern, A.: Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Math.-naturwiss. Diss. Göttingen 30, S (1925)

  33. Titchmarsh E.C.: On Epstein’s Zeta-Function. Proc. Lond. Math. Soc. S2-36(1), 485–500 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  34. Toth J.A., Zelditch S.: Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct. Anal. 23(2), 715–775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Watson, T.C.: Rankin triple products and quantum chaos. ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.), Princeton University

  36. Weil A.: On some exponential sums. Proc. Nat. Acad. Sci. USA 34, 204–207 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Weyl H.: Uber die asymptotische Verteilung der Eigenwerte. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1911, 110–117 (1911)

    MATH  Google Scholar 

  38. Zelditch S.: Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series. J. Funct. Anal. 97(1), 1–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zelditch S.: On the rate of quantum ergodicity. I. Upper bounds. Comm. Math. Phys. 160(1), 81–92 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Zelditch, S.: Logarithmic lower bound on the number of nodal domains. J. Spectr. Theory, issue in honor of Yuri Safarov (2016) (to appear)

  41. Zhao P.: Quantum variance of Maass-Hecke cusp forms. Comm. Math. Phys. 297(2), 475–514 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junehyuk Jung.

Additional information

Communicated by S. Zelditch

We would like to thank Peter Sarnak for introducing his recent paper with Ghosh and Reznikov to the author, and suggesting this problem as a part of the Ph.D. thesis of the author. We also appreciate Peter Sarnak and Nicolas Templier for encouragement and many helpful comments. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(No. 2013042157), and partially by the National Science Foundation under agreement No. DMS-1128155. The author was also partially supported by TJ Park Post-doc Fellowship funded by POSCO TJ Park Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J. Quantitative Quantum Ergodicity and the Nodal Domains of Hecke–Maass Cusp Forms. Commun. Math. Phys. 348, 603–653 (2016). https://doi.org/10.1007/s00220-016-2694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2694-8

Navigation