Skip to main content
Log in

Global Solutions of the Boltzmann Equation Over \({\mathbb{R}^D}\) Near Global Maxwellians with Small Mass

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the dynamics defined by the Boltzmann equation set in the Euclidean space \({\mathbb{R}^D}\) in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a special solution of the Boltzmann equation for which the collision integral vanishes identically. In this setting, the dispersion due to the advection operator quenches the dissipative effect of the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann equation in this regime is given by noninteracting, freely transported states and can be described with the tools of scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alonso R., Gamba I.M.: Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section. J. Stat. Phys. 137, 1147–1165 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Arsenio D.: On the global existence of mild solutions to the Boltzmann equation for small data in L D. Commun. Math. Phys. 302, 453–476 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bony, J.-M.: Existence globale et diffusion pour les modèles discrets de la cinétique des gaz. First European Congress of Mathematics, Vol. I (Paris, 1992), pp. 391–410. Progress in Mathematics, vol. 119. Birkhäuser, Basel (1994)

  4. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Editions scientifiques et médicales Elsevier, Paris (2000)

  5. Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  6. Cercignani C.: Theory and Applications of the Boltzmann Equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  7. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Dafermos, C., Feireisl, E. Handbook of Differential Equations. Evolutionary Equations, vol. 2, Elsevier B.V., Amsterdam (2006)

  9. Goudon T.: Generalized invariant sets for the Boltzmann equation. Math. Models Methods Appl. Sci. 7, 457–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamdache K.: Existence in the large and asymptotic behaviour for the Boltzmann equation. Jpn. J. Appl. Math. 2, 1–15 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy G.H., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  12. Illner R., Shinbrot M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95, 217–226 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kaniel S., Shinbrot M.: The Boltzmann equation: uniqueness and local existence. Commun. Math. Phys. 58, 65–84 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lax P.D., Phillips R.S.: Scattering theory, revised edn. Academic Press, San Diego (1989)

    Google Scholar 

  15. Levermore, C.D.: Global Maxwellians over all space and their relation to conserved quantities of classical kinetic equations. (preprint)

  16. Lu X.: Spatial decay of solutions of the Boltzmann equation: converse properties of long time limiting behavior. SIAM J. Math. Anal. 30, 1151–1174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 147, 49–88 (1867)

    Article  Google Scholar 

  18. Reed M., Simon B.: Methods of Modern Mathematical Physics. III: Scattering Theory. Academic Press, San Diego (1979)

    MATH  Google Scholar 

  19. Tartar L.: From Hyperbolic Systems to Kinetic Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  20. Toscani G.: Global solution of the initial value problem for the Boltzmann equation near a local Maxwellian. Arch. Ration. Mech. Anal. 102, 231–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Golse.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardos, C., Gamba, I.M., Golse, F. et al. Global Solutions of the Boltzmann Equation Over \({\mathbb{R}^D}\) Near Global Maxwellians with Small Mass. Commun. Math. Phys. 346, 435–467 (2016). https://doi.org/10.1007/s00220-016-2687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2687-7