Skip to main content
Log in

Vertex Operators Arising from Jacobi–Trudi Identities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an interpretation of the boson-fermion correspondence as a direct consequence of the Jacobi–Trudi identity. This viewpoint enables us to construct from a generalized version of the Jacobi–Trudi identity the action of a Clifford algebra on the polynomial algebras that arrive as analogues of the algebra of symmetric functions. A generalized Giambelli identity is also proved to follow from that identity. As applications, we obtain explicit formulas for vertex operators corresponding to characters of the classical Lie algebras, shifted Schur functions, and generalized Schur symmetric functions associated to linear recurrence relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A.: Classical tau-function for quantum spin chains. J. High Energy Phys. 09, 64 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bazhanov V., Reshetikhin N.: Restricted solid-on-solid models connected with simply laced algebras and conformal field theory. J. Phys. A: Math. Gen. 23, 1477–1492 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cherednik, I.: An analogue of character formula for Hecke algebras. Funct. Anal. Appl. 21(2), 94–95 (1987) (translation: 172–174)

  4. Date E., Jimbo M., Kashiwara M., Miwa T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems—Classical Theory and Quantum Theory., pp. 39–119. World Science Publishing, Singapore (1983)

    Google Scholar 

  5. Frenkel E., Ben-Zvi D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  6. Frenkel I.B.: Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J. Funct. Anal. 44(3), 259–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134. Academic Press, Inc., Boston (1988)

    MATH  Google Scholar 

  8. Frenkel, I.B., Penkov, I., Serganova, V.: A categorification of the boson-fermion correspondence via representation theory of sl(∞). Comm. Math. Phys. (in press). arXiv:1405.7553

  9. Fulton W., Harris J.: Representation Theory. GTM 129. A First Course. Springer, New York (1991)

    MATH  Google Scholar 

  10. Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harnad, J., Lee, E.: Symmetric polynomials, generalized Jacobi–Trudi identites and τ -functions. Comm. Math. Phys. (in press). arXiv:1304.0020

  12. Jimbo M., Miwa T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jing N.: Vertex operators, symmetric functions, and the spin group Γ n . J. Algebra 138(2), 340–398 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jing N.: Vertex operators and Hall–Littlewood symmetric functions. Adv. Math. 87(2), 226–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jing N., Nie B.: Vertex operators, Weyl determinant formulae and Littlewood duality. Ann. Combin. 19, 427–442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kac V.G.: Vertex Algebras for Beginners, University Lecture Series, vol. 10. 2nd edn. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Kac V.G., Raina A.K., Rozhkovskaya N.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 2nd edn. World Scientific, Hackensack (2013)

    Book  MATH  Google Scholar 

  18. Koike K., Terada I.: Young diagrammatic methods for the representation theory of the classical groups of types B n ,C n ,D n . J. Algebra 107, 466–511 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS Regional Conference Series in Mathematics, vol. 99. American Mathematical Society, Providence (2003)

  20. Lassalle M.: A short proof of generalized Jacobi–Trudi expansions for Macdonald polynomials. Contemp. Math. 417, 271–280 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  22. Macdonald, I.G.: Schur functions: theme and variations. Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., vol. 498, pp. 5–39. Univ. Louis Pasteur, Strasbourg (1992)

  23. Molev, A.I.: Comultiplication rules for the double Schur functions and Cauchy identities. Electron. J. Combin. 16(1), 1–44 (2009) (Article 13)

  24. Okounkov A., Olshanski G.: Shifted Schur functions. St. Petersb. Math. J. 9, 239–300 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Sergeev A.N., Veselov A.P.: Jacobi–Trudy formula for generalized Schur polynomials. Mosc. Math. J. 14(1), 161–168 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Weyl H.: The Classical Groups; Their Invariants and Representations. Princeton Universiy Press, Princeton (1946)

    MATH  Google Scholar 

  27. Zelevinsky A.V.: Representations of Finite Classical Groups, A Hopf Algebra Approach. Lecture Notes in Mathematics, vol. 869. Springer, Berlin (1981)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Rozhkovskaya.

Additional information

Communicated by A. Borodin

Supported in part by Simons Foundation and NSFC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, N., Rozhkovskaya, N. Vertex Operators Arising from Jacobi–Trudi Identities. Commun. Math. Phys. 346, 679–701 (2016). https://doi.org/10.1007/s00220-015-2564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2564-9

Keywords

Navigation