Skip to main content
Log in

Validity of the Spin-Wave Approximation for the Free Energy of the Heisenberg Ferromagnet

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein–Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Balaban T.: A low temperature expansion for classical N-vector models. I. A renormalization group flow. Commun. Math. Phys. 167, 103–154 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Balaban T.: A low temperature expansion for classical N-vector models. II. Renormalization group equations. Commun. Math. Phys. 182, 675–721 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Balaban T.: A low temperature expansion for classical N-vector models. III. A complete inductive description, fluctuation integrals. Commun. Math. Phys. 196, 485–521 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bloch F.: Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930)

    Article  ADS  MATH  Google Scholar 

  6. Bloch F.: Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Z. Phys. 74, 295–335 (1932)

    Article  ADS  Google Scholar 

  7. Bricmont J., Fontaine J.-R., Lebowitz J.L., Lieb E.H., Spencer T.: Lattice systems with a continuous symmetry III. Low temperature asymptotic expansion for the plane rotator model. Commun. Math. Phys. 78, 545–566 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  8. Caputo P., Liggett T.M., Richthammer T.: Proof of Aldous’ spectral gap conjecture. J. Am. Math. Soc. 23, 831–851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conlon G.J., Solovej J.P.: On asymptotic limits for the quantum Heisenberg model. J. Phys. A Math. Gen. 23, 3199–3213 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  10. Conlon G.J., Solovej J.P.: Upper bound on the free energy of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 23, 223–231 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Conlon G.J., Solovej J.P.: Random walk representations of the Heisenberg model. J. Stat. Phys. 64, 251–270 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Conlon G.J., Solovej J.P.: Uniform convergence of the free energy of the classical Heisenberg model to that of the Gaussian model. J. Stat. Phys. 65, 235–245 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Correggi M., Giuliani A.: The free energy of the quantum Heisenberg ferromagnet at large spin. J. Stat. Phys. 149, 234–245 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Correggi M., Giuliani A., Seiringer R.: Validity of spin-wave theory for the quantum Heisenberg model. Europhys. Lett. 108, 20003 (2014)

    Article  ADS  Google Scholar 

  15. Chung, F.R.K., Yau, S.-T.: A combinatorial trace formula. In: Yau, S.-T. (ed.) Tsing Hua Lectures on Geometry and Analysis (Hsinchu, 1990–1991), pp. 107–116. Int. Press, Cambridge (1997)

  16. Dyson F.J.: General theory of spin-waves interactions. Phys. Rev. 102, 1217–1230 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dyson F.J.: Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102, 1230–1244 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Dyson F.J., Lieb E.H., Simon B.: Phase transitions in the quantum Heisenberg model. Phys. Rev. Lett. 37, 120–123 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  20. Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–85 (1976)

    Article  ADS  Google Scholar 

  21. Fröhlich J., Spencer T.: Massless phases and symmetry restoration in abelian gauge theories and spin systems. Commun. Math. Phys. 83, 411–454 (1982)

    Article  ADS  Google Scholar 

  22. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  23. Graf G.M., Schenker D.: 2-Magnon scattering in the Heisenberg model. Ann. Inst. Henri Poincarés 67, 91–107 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Hanus J.: Bound states in the Heisenberg ferromagnet. Phys. Rev. Lett. 11, 336–338 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  25. Herring C., Kittel C.: On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869–880 (1951)

    Article  ADS  MATH  Google Scholar 

  26. Holstein T., Primakoff H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940)

    Article  ADS  MATH  Google Scholar 

  27. Kennedy T., King C.: Spontaneous symmetry breakdown in the abelian Higgs model. Commun. Math. Phys. 104, 327–347 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Lieb E.H., Seiringer R., Yngvason J.: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  29. Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  30. Lu S.L., Yau H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156, 399–433 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Millet P.J., Kaplan H.: Three-reversed-spin bound states in the Heisenberg model. Phys. Rev. B 10, 3923–3934 (1973)

    Article  ADS  Google Scholar 

  32. Morris B.: Spectral gap for the interchange process in a box. Electron. Commun. Probab. 13, 311–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Seiringer R.: The thermodynamic pressure of a dilute Fermi gas. Commun. Math. Phys. 261, 729–758 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Seiringer R.: Free energy of a dilute Bose gas: lower bound. Commun. Math. Phys. 279, 595–636 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Starr, S., Conomos, M.P.: Asymptotics of the spectral gap for the interchange process on large hypercubes. J. Stat. Mech. Th. Exp. P10018 (2011)

  36. Toth B.: Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 28, 75–84 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Wortis M.: Bound states of two spin waves in the Heisenberg ferromagnet. Phys. Rev. 132, 85–97 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  38. Wortis M.: Low-temperature behavior of the Heisenberg ferromagnet. Phys. Rev. 138, 1126–1145 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  39. Yin J.: Free energies of dilute Bose gases: upper bound. J. Stat. Phys. 141, 683–726 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giuliani.

Additional information

Communicated by H. Spohn

Copyright © 2015 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correggi, M., Giuliani, A. & Seiringer, R. Validity of the Spin-Wave Approximation for the Free Energy of the Heisenberg Ferromagnet. Commun. Math. Phys. 339, 279–307 (2015). https://doi.org/10.1007/s00220-015-2402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2402-0

Keywords

Navigation