Skip to main content
Log in

Partial Regularity of Suitable Weak Solutions to the Fractional Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 20 February 2015

Abstract

In this paper, we study the partial regularity of fractional Navier–Stokes equations in \({\mathbb{R}^3 \times (0, \infty)}\) with \({3/4 < s < 1}\) . We show that the suitable weak solution is regular away from a relatively closed singular set whose (5−4s)-dimentional Hausdorff measure is zero. The result is a generalization of the partial regularity for the classical Navier–Stokes system in Caffarelli et al. (Commun Pure Appl Math 35:771–831, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Caffarelli L., Vasseur A.: Drift diffusion equtions with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171, 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Constantin P., Wu. J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. I. H. Poincaré-Anal. Non Linéaire 26, 159–180 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Fabes E., Kenig C., Serapioni R.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7, 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Katz N.H., Pavlovic N.: A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12(2), 355–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lin F.: A new proof the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  Google Scholar 

  8. Lions J.L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Donud, Paris (1969)

    Google Scholar 

  9. Mercado J.M., Guido E.P., Sánchez-Sesma A.J., Íñiguez M., González A. et al.: Analysis of the Blasius’ formula and the Navier–Stokes fractional equation. In: Klapp, J. (ed.) Fluid Dynamics in Physics, Engineering and Environmental Applications, Environmental Science and Engineering, pp. 475–480. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Palatucci, G., Savin, O., Valdinoci, E.: Local and global minimizers for a variational energy involving a fractional norm. Annali di Matematica Pura ed Applicata (2012). doi:10.1007/s10231-011-0243-9

  11. Scheffer V.: Partial regularity of solutions to the Navier–Stokes equations. Pacif. J. Math. 66, 535–552 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scheffer V.: Hausdoff measure and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Scheffer V.: The Navier–Stokes equations on a bounded domain. Commun. Math. Phys. 73, 1–42 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  15. Tang, L., Yu, Y.: Partial Hölder Regularity for Steady Fractional Navier–Stokes Equation (submitted)

  16. Tao T.: Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation. Anal. PDE 2, 361–366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Temam R.: Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam, New York (1977)

    MATH  Google Scholar 

  18. Wu J.: Generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)

    Article  ADS  MATH  Google Scholar 

  19. Zhang X.: Stochastic Lagrangian particle approach to fractal NavierStokes equations. Commun. Math. Phys. 311, 133–155 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Tang.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Yu, Y. Partial Regularity of Suitable Weak Solutions to the Fractional Navier–Stokes Equations. Commun. Math. Phys. 334, 1455–1482 (2015). https://doi.org/10.1007/s00220-014-2149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2149-z

Keywords

Navigation