Skip to main content
Log in

Tail Asymptotics of Free Path Lengths for the Periodic Lorentz Process: On Dettmann’s Geometric Conjectures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the simplest case, consider a \({\mathbb{Z}^d}\)-periodic (d ≥ 3) arrangement of balls of radii < 1/2, and select a random direction and point (outside the balls). According to Dettmann’s first conjecture, the probability that the so determined free flight (until the first hitting of a ball) is larger than t >  > 1 is \({\sim\frac{C}{t}}\), where C is explicitly given by the geometry of the model. In its simplest form, Dettmann’s second conjecture is related to the previous case with tangent balls (of radii 1/2). The conjectures are established in a more general setup: for \({\mathcal{L}}\)-periodic configuration of—possibly intersecting—convex bodies with \({\mathcal{L}}\) being a non-degenerate lattice. These questions are related to Pólya’s visibility problem (Arch Math Phys Ser 2:135–142, 1918), to theories of Bourgain et al. (Commun Math Phys 190:491–508,1998), and of Marklof–Strömbergsson (Ann Math 172:1949–2033,2010). The results also provide the asymptotic covariance of the periodic Lorentz process assuming it has a limit in the super-diffusive scaling, a fact if d = 2 and the horizon is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bleher P.M.: Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. Stat. Phys. 66(1), 315–373 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bunimovich L.A., Sinai Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bunimovich L.A., Sinai Ya.G., Chernov N.I.: Statistical properties of two dimensional dispersing billiards. Russian Math. Surv. 46, 47–106 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bourgain J., Golse F., Wennberg B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bálint P., Tóth I.P.: Exponential decay of correlations in multi-dimensional dispersing billiards. Annales Henri Poincaré 9, 1309–1369 (2008)

    Article  ADS  MATH  Google Scholar 

  6. Chernov N., Dolgopyat D.: Anomalous current in periodic Lorentz gases with infinite horizon. Russian Math. Surv. 64, 73–124 (2009)

    MathSciNet  Google Scholar 

  7. Dettmann C.P.: New horizons in multidimensional diffusion: The Lorentz gas and the Riemann Hypothesis. J. Stat. Phys. 146, 181–204 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Golse F., Wennberg B.: On the distribution of free path lengths for the periodic Lorentz gas II. ESAIM M2AN 34, 1151–1163 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kraemer, A.S., Sanders, D.P.: Periodizing quasi-crystals: Anomalous diffusion in quasi-periodic systems. http://arxiv.org/abs/1206.1103

  10. Krámli A., Simányi N., Szász D.: Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2, 311–326 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Kruskal C.P.: The orchard visibility problem and some variants. J. Comput. Syst. Sci. 74, 587–597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lorentz H.: Le mouvement des électrons dans les métaux. Arch. Néerl. 10, 336–371 (1905)

    Google Scholar 

  13. Marklof, J.: Kinetic transport in crystals. In: Proceedings of the XVI International Congress on Mathematical Physics, Prague 2009, World Scientific, pp. 162–179 (2010)

  14. Marklof J., Strömbergsson A.: The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. Math. 172, 1949–2033 (2010)

    Article  MATH  Google Scholar 

  15. Marklof J., Strömbergsson A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. 174, 225–298 (2011)

    Article  MATH  Google Scholar 

  16. Marklof J., Strömbergsson A.: The periodic Lorentz gas in the Boltzmann-Grad limit: asymptotic estimates. GAFA Geom. Funct. Anal. 21, 560–647 (2011)

    Article  MATH  Google Scholar 

  17. Pólya G.: Zahlentheoretisches und wahrscheinlichkeitstheoretisches über die Sichtweite im Walde. Arch. Math. Phys. Ser. 2(27), 135–142 (1918)

    Google Scholar 

  18. Sanders, D.P.: Deterministic Diffusion in Periodic Billiard Models, Thesis, U. of Warwick, pp. 204. (2005).arXiv:0808.2252[cond-mat.stat-mech]

  19. Sanders D.P.: Normal diffusion in crystal structures and higher-dimensional billiard models with gaps. Phys. Rev. E 78, 060101 (2008)

    Article  ADS  Google Scholar 

  20. Schmidt W.: Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J. 35, 327–339 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Simányi N., Szász D.: Non-integrability of cylindric billiards and transitive Lie-group actions. Ergod. Theory Dynam. Syst. 20, 593–610 (2000)

    Article  MATH  Google Scholar 

  22. Szász, D.: The K-property of ‘orthogonal’ cylindric billiards. Commun. Math. Phys. 160, 581–597 (1994)

  23. Szász D.: Some challenges in the theory of (semi)-dispersing billiards. Nonlinearity 21, 187–193 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Szász D., Varjú T.: Limit laws and recurrence for the planar Lorentz process with infinite horizon. J. Stat. Phys. 129, 59–80 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Wennberg B.: Free path lengths in quasi crystals. J. Stat. Phys. 147(5), 981–990 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Young L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Nándori.

Additional information

Communicated by M. Lyubich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nándori, P., Szász, D. & Varjú, T. Tail Asymptotics of Free Path Lengths for the Periodic Lorentz Process: On Dettmann’s Geometric Conjectures. Commun. Math. Phys. 331, 111–137 (2014). https://doi.org/10.1007/s00220-014-2086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2086-x

Keywords

Navigation