Skip to main content
Log in

A Criterion for Asymptotic Completeness in Local Relativistic QFT

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate a generalized concept of asymptotic completeness and show that it holds in any Haag–Kastler quantum field theory with an upper and lower mass gap. It remains valid in the presence of pairs of oppositely charged particles in the vacuum sector, which invalidate the conventional property of asymptotic completeness. Our result can be restated as a criterion characterizing a class of theories with complete particle interpretation in the conventional sense. This criterion is formulated in terms of certain asymptotic observables (Araki–Haag detectors) whose existence, as strong limits of their approximating sequences, is our main technical result. It is proven with the help of a novel propagation estimate, which is also relevant to scattering theory of quantum mechanical dispersive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  2. Araki H.: Mathematical Theory of Quantum Fields. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  3. Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part~I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38. Amer. Math. Soc., Providence, pp. 199–269 (1982)

  4. Béllisard J., Fröhlich J., Gidas B.: Soliton mass and surface tension in the \({(\lambda\phi^4)_2}\) quantum field model. Commun. Math. Phys. 60, 37–72 (1978)

    Article  ADS  Google Scholar 

  5. Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Buchholz, D.: Particles, infraparticles and the problem of asymptotic completeness. In: VIIIth International Congress on Mathematical Physics (Marseille 1986). Word Scientific, Singapore (1987)

  8. Buchholz, D.: On the manifestations of particles. In: Mathematical Physics Towards the 21st Century. In: Sen, R.N., Gersten, A. (eds.) Proceedings Beer-Sheva 1993. Ben-Gurion University of the Negev Press (1994)

  9. Buchholz D., Summers S.J.: Scattering in relativistic quantum field theory: fundamental concepts and tools. In: Françoise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, vol. 5, Elsevier, Amsterdam (2006)

    Google Scholar 

  10. Burnap C.: Isolated one particle states in boson quantum field theory models. Ann. Phys. 104, 184–196 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  11. Combescure M., Dunlop F.: Three-body asymptotic completeness for \({P(\phi)_2}\) models. Commun. Math. Phys. 85, 381–418 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Dereziński J., Gérard C.: Scattering Theory of Classical and Quantum N-Particle Systems. Springer, New York (1997)

    Book  Google Scholar 

  13. Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  14. Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35, 49–85 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  15. Dybalski W.: Haag–Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Dybalski W., Gérard C.: Towards asymptotic completeness of two-particle scattering in local relativistic QFT. Commun. Math. Phys. 326(i), 81–109 (2014)

    Article  MATH  ADS  Google Scholar 

  17. Dybalski W., Tanimoto Y.: Asymptotic completeness for infraparticles in two-dimensional conformal field theory. Lett. Math. Phys. 103(ii), 1223–1241 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Dereziński J.: Asymptotic completeness of long-range N-body quantum systems. Ann. Math. 138, 427–476 (1993)

    Article  MATH  Google Scholar 

  19. Fredenhagen K., Rehren K.H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras I. General theory. Commun. Math. Phys. 125, 201–226 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Fröhlich J.: New super-selection sectors (“soliton-states”) in two-dimensional Bose quantum field models. Commun. Math. Phys. 47, 269–310 (1976)

    Article  ADS  Google Scholar 

  21. Gérard C.: Mourre estimate for regular dispersive systems. Ann. Inst. H. Poincaré 54, 59–88 (1991)

    MATH  Google Scholar 

  22. Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled \({P(\phi)_2}\) model and other applications of high temperature expansions: part I. Physics of quantum field models. Part II. The cluster expansion. In: Velo, G., Wightman, A.S. (eds.) Constructive Quantum Field Theory. (Erice, 1973). Springer, Berlin (1973)

  23. Glimm J., Jaffe A., Spencer T.: The Wightman axioms and particle structure in the \({P(\phi)_2}\) quantum field model. Ann. Math. 100, 585–632 (1974)

    Article  MathSciNet  Google Scholar 

  24. Graf G.M.: Asymptotic completeness for N-body short-range quantum systems: a new proof. Commun. Math. Phys. 132, 73–101 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Greenberg O.W.: Generalized free fields and models of local field theory. Ann. Phys. 16, 158–176 (1961)

    Article  MATH  ADS  Google Scholar 

  26. Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Haag R.: Local Quantum Physics. Springer, New York (1992)

    Book  MATH  Google Scholar 

  28. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308–320 (1965)

  29. Hepp K.: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1, 95–111 (1965)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Herbst I.: One-particle operators and local internal symmetries. J. Math. Phys. 12, 2480–2490 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  31. Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1985)

    MATH  Google Scholar 

  32. Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Müger M.: Superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962)

    MathSciNet  MATH  Google Scholar 

  35. Reed M., Simon B.: Methods of Modern Mathematical Physics. Part III: Scattering Theory. Academic Press, New York (1979)

    Google Scholar 

  36. Sigal I.M., Soffer A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann. Math. 126, 35–108 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spencer T., Zirilli F.: Scattering states and bound states in \({\lambda P(\phi)_2}\) . Commun. Math. Phys. 49, 1–16 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  38. Streater R.F., Wightman A.S.: PCT, Spin and Statistics and All That. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  39. Tanimoto, Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. arXiv:1301.6090 [math-ph] (2013, preprint)

  40. Zieliński L.: Scattering for a dispersive charge-transfer model. Ann. Inst. Henri Poincaré 67, 339–386 (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Dybalski.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dybalski, W., Gérard, C. A Criterion for Asymptotic Completeness in Local Relativistic QFT. Commun. Math. Phys. 332, 1167–1202 (2014). https://doi.org/10.1007/s00220-014-2069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2069-y

Keywords

Navigation