Skip to main content
Log in

Gauge Fixing and Classical Dynamical r-Matrices in ISO(2, 1)-Chern–Simons Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply the Dirac gauge fixing procedure to Chern–Simons theory with gauge group ISO(2, 1) on manifolds \({\mathbb{R} \times S}\), where S is a punctured oriented surface of general genus. For all gauge fixing conditions that satisfy certain structural requirements, this yields an explicit description of the Poisson structure on the moduli space of flat ISO(2, 1)-connections on S in terms of classical dynamical r-matrices for \({\mathfrak{iso}}\) (2, 1). We show that the Poisson structures and classical dynamical r-matrices arising from different gauge fixing conditions are related by dynamical ISO(2, 1)-valued transformations that generalise the usual gauge transformations of classical dynamical r-matrices. By means of these transformations, it is possible to classify all Poisson structures and classical dynamical r-matrices obtained from such gauge fixings. Generically these Poisson structures combine classical dynamical r-matrices for non-conjugate Cartan subalgebras of \({\mathfrak{iso}}\)(2, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achúcarro A., Townsend P.: A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180, 89–92 (1986). doi:10.1016/0370-2693(86)90140-1

    Article  ADS  MathSciNet  Google Scholar 

  2. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48 445–495 (1998). arXiv:dg-ga/9707021

    Google Scholar 

  3. Alekseev, A.Y.,Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory I. Commun. Math. Phys. 172, 317–358 (1995). doi:10.1007/BF02099431, arXiv:hep-th/9403066

    Google Scholar 

  4. Alekseev, A.Y., Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory II. Commun. Math. Phys. 174, 561–604 (1996). doi:10.1007/BF02101528, arXiv:hep-th/9408097

    Google Scholar 

  5. Alekseev, A.Y., Malkin, A.Z.: Symplectic structure of the moduli space of flat connection on a Riemann surface. Commun. Math. Phys. 169, 99–119 (1995). doi:10.1007/BF02101598, arXiv:hep-th/9312004v1

  6. Alekseev, A.Y., Schomerus, V.: Representation theory of Chern–Simons observables. Duke Math. J. 85, 447–510 (1996). doi:10.1215/S0012-7094-96-08519-1, arXiv:q-alg/9503016

  7. Atiyah M., Bott R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 54, 523–615 (1983). doi:10.1098/rsta.1983.0017

    Article  ADS  MathSciNet  Google Scholar 

  8. Bar-Natan D., Witten E.: Perturbative expansion of Chern–Simons theory with non-compact gauge group. Commun. Math. Phys. 141, 423–440 (1991). doi:10.1007/BF02101513

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Birman, J.S.:Braids, links, and mapping class groups, volume 82 of Annals of Mathematics Studies. Princeton University Press, Princeton. ISBN 9780691081496 (1974)

  10. Buffenoir, E.,Noui, K.: Unfashionable observations about three dimensional gravity (2003). Preprint, arXiv:gr-qc/0305079

  11. Buffenoir, E., Noui, K., Roche, P.: Hamiltonian quantization of Chern Simons theory with SL(2, C) group. Class. Quantum Gravity 19, 4953–5015 (2002). doi:10.1088/0264-9381/19/19/313, arXiv:hep-th/0202121

  12. Buffenoir, E., Roche, P.: Two dimensional lattice gauge theory based on a quantum group. Commun. Math. Phys. 170, 669–698 (1995). doi:10.1007/BF02099153, arXiv:hep-th/9405126

    Google Scholar 

  13. Buffenoir, E., Roche, P.: Chern–Simons theory with sources and dynamical quantum groups I: canonical analysis and algebraic structures (2005). Preprint, arXiv:hep-th/0505239

  14. de Sousa Gerbert P.: On spin and (quantum) gravity in 2 + 1 dimensions. Nucl. Phys. B 346, 440–472 (1990). doi:10.1016/0550-3213(90)90288-O

    Article  ADS  Google Scholar 

  15. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Modern Phys. 21, 392 (1949). doi:10.1103/RevModPhys.21.392

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Dirac P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950). doi:10.4153/CJM-1950-012-1

    Article  MATH  MathSciNet  Google Scholar 

  17. Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang–Baxter equations (1999). Preprint, arXiv:math/9908064

  18. Etingof, P.,Schiffmann, O.: On the moduli space of classical dynamical r-matrices. Math. Res. Lett. 8, 157–170 (2001). arXiv:math/0005282

    Google Scholar 

  19. Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang–Baxter equation. Commun. Math. Phys. 192, 77–120 (1998). doi:10.1007/s002200050292, arXiv:q-alg/9703040

  20. Fehér, L.: Poisson–Lie dynamical r-matrices from Dirac reduction. Czech. J. Phys. 54, 1265–1273 (2004). doi:10.1007/s10582-004-9788-9, arXiv:math/0406274

    Google Scholar 

  21. Fehér, L., Gábor, A., Pusztai, B.G.: On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras. J. Phys. A Math. Gen. 34, 7235 (2001). doi:10.1088/0305-4470/34/36/313, arXiv:math-ph/0105047

  22. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix. Am. Math. Soc. Transl. 191, 67–86 (1999). arXiv:math/9802054

  23. Gott J.: Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett. 66, 1126–1129 (1991). doi:10.1103/PhysRevLett.66.1126

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton. ISBN 0691037698 (1994)

  25. Martín-García, J.M.: xPerm: fast index canonicalization for tensor computer algebra. Comput. Phys. Commun. 179, 597–603 (2008). doi:10.1016/j.cpc.2008.05.009, arXiv:0803.0862

    Google Scholar 

  26. Meusburger, C., Noui, K.: Combinatorial quantisation of the Euclidean torus universe. Nucl. Phys. B 841, 463–505 (2010). doi:10.1016/j.nuclphysb.2010.08.014, arXiv:1007.4615

    Google Scholar 

  27. Meusburger, C., Noui, K.: The Hilbert space of 3d gravity: quantum group symmetries and observables. Adv. Theor. Math. Phys. 14, 1651–1716 (2010). arXiv:0809.2875

  28. Meusburger, C., Schönfeld, T.: Gauge fixing in (2+1)-gravity: Dirac bracket and spacetime geometry. Class. Quantum Gravity 28, 125008 (2011). doi:10.1088/0264-9381/28/12/125008, arXiv:1012.1835

  29. Meusburger, C., Schroers, B.J.: Poisson structure and symmetry in the Chern–Simons formulation of (2 + 1)-dimensional gravity. Class. Quantum Gravity 20, 2193–2233 (2003). doi:10.1088/0264-9381/20/11/318, arXiv:gr-qc/0301108

  30. Meusburger, C., Schroers, B.J.: The quantisation of Poisson structures arising in Chern–Simons theory with gauge group \({G \ltimes \mathfrak{g}^*}\). Adv. Theor. Math. Phys. 7, 1003–1042 (2004). arXiv:hep-th/0310218

  31. Meusburger, C., Schroers B.J. Mapping class group actions in Chern–Simons theory with gauge group \({G\ltimes\mathfrak{g}^*}\). Nucl. Phys. B 706, 569–597 (2005). doi:10.1016/j.nuclphysb.2004.10.057, arXiv:hep-th/0312049

    Google Scholar 

  32. Noui, K., Perez, A.: Three-dimensional loop quantum gravity: coupling to point particles. Class. Quantum Gravity 22, 4489–4513 (2005). doi:10.1088/0264-9381/22/21/005, arXiv:gr-qc/0402111

  33. Reshetikhin N.Y., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991). doi:10.1007/BF01239527

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Schiffmann, O.: On classification of dynamical r-matrices. Math. Res. Lett. 5, 13–30 (1998). arXiv:q-alg/9706017

    Google Scholar 

  35. Stachura P.: Poisson–Lie structures on Poincaré and Euclidean groups in three dimensions. J. Phys. A Math. Gen. 31, 4555–4564 (1998). doi:10.1088/0305-4470/31/19/018

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Witten E.: 2 +  1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988). doi:10.1016/0550-3213(88)90143-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989). doi:10.1007/BF01217730

  38. Witten E.: Topology-changing amplitudes in (2+1)-dimensional gravity. Nucl. Phys. B 323, 113 (1989). doi:10.1016/0550-3213(89)90591-9

    Article  ADS  MathSciNet  Google Scholar 

  39. Witten E.: Quantization of Chern–Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991). doi:10.1007/BF02099116

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Witten, E.: Analytic continuation of Chern–Simons theory. In: Andersen, J.E., Boden, H., Hahn, A., Benjamin, H. (eds.) Chern–Simons Gauge Theory: 20 Years After, p. 347. American Mathematical Society, Providence (2011). arXiv:1001.2933

  41. Xu, P.: Triangular dynamical r-matrices and quantization. Adv. Math. 166, 1–49 (2002). doi:10.1006/aima.2001.2000, arXiv:math/0005006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meusburger.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meusburger, C., Schönfeld, T. Gauge Fixing and Classical Dynamical r-Matrices in ISO(2, 1)-Chern–Simons Theory. Commun. Math. Phys. 327, 443–479 (2014). https://doi.org/10.1007/s00220-014-1938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1938-8

Keywords

Navigation