Skip to main content
Log in

Froth-like Minimizers of a Non-Local Free Energy Functional with Competing Interactions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the ground and low energy states of a one dimensional non-local free energy functional describing at a mean field level a spin system with both ferromagnetic and antiferromagnetic interactions. In particular, the antiferromagnetic interaction is assumed to have a range much larger than the ferromagnetic one. The competition between these two effects is expected to lead to the spontaneous emergence of a regular alternation of long intervals on which the spin profile is magnetized either up or down, with an oscillation scale intermediate between the range of the ferromagnetic and that of the antiferromagnetic interaction. In this sense, the optimal or quasi-optimal profiles are “froth-like”: if seen on the scale of the antiferromagnetic potential they look neutral, but if seen at the microscope they actually consist of big bubbles of two different phases alternating among each other. In this paper we prove the validity of this picture, we compute the oscillation scale of the quasi-optimal profiles and we quantify their distance in norm from a reference periodic profile. The proof consists of two main steps: we first coarse grain the system on a scale intermediate between the range of the ferromagnetic potential and the expected optimal oscillation scale; in this way we reduce the original functional to an effective “sharp interface” one. Next, we study the latter by reflection positivity methods, which require as a key ingredient the exact locality of the short range term. Our proof has the conceptual interest of combining coarse graining with reflection positivity methods, an idea that is presumably useful in much more general contexts than the one studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Choksi R., Otto F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22, 569–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti G., Müller S.: A new approach to variational problems with multiple scales. Comm. Pure App. Math. 54, 761–825 (2001)

    Article  MATH  Google Scholar 

  3. Baernstein A., Taylor B.: Spherical rearrangements, subharmonic functions, and *-functions in n-space. Duke Math. J. 43, 245–68 (1976)

    Google Scholar 

  4. Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. New York: Oxford University Press, 2001

  5. Bates F.S., Fredrickson G.H.: Block copolymers - Designer soft materials. Physics Today 52(2), 32–38 (1999)

    Article  Google Scholar 

  6. Belgacem B., Conti H., DeSimone S., Mller A.S.: Energy scaling of compressed elastic films - three-dimensional elasticity and reduced theories. Arch. Rati. Mech. Anal. 164, 1–37 (2002)

    Article  MATH  Google Scholar 

  7. Braides, A.: Gamma-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, Vol. 22. Oxford: Oxford University Press, 2002

  8. Brascamp, H.J., Lieb, E.H.: Some Inequalities for Gaussian Measures and the Long-Range Order of the One-Dimensional Plasma. In: Functional Integration and its Applications. Proceedings of the Conference on Functional Integration, Cumberland Lodge, England, edited by A.M. Arthurs, London: Clarendon Press, 1975, pp. 1–14

  9. Buttà à P., Lebowitz J.L.: Local mean field models of uniform to nonuniform density fluid-crystal transitions. J. Phys. Chem. B 109, 6849–6854 (2005)

    Article  Google Scholar 

  10. Carlen E.A., Carvalho M.C., Esposito R., Lebowitz J.L., Marra R.: Free energy minimizers for a two-species model with segregation and liquid-vapour transition. Nonlinearity 16, 1075–1105 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Carlen E.A., Carvalho M.C., Esposito R., Lebowitz J.L., Marra R.: Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional. Nonlinearity 22, 2919–2952 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cassandro M., Orlandi E., Presutti E.: Interfaces and typical Gibbs configurations for one-dimensional Kac potentials. Probab. Theory Relat. Fields 96, 57–96 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Oshita Y.: Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction. SIAM J. Math. Anal. 37, 1299–1332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choi J., Wu J., Won C., Wu Y.Z., Scholl A., Doran A., Owens T., Qiu Z.Q.: Magnetic bubble domain phase at the spin reorientation transition of ultrathin Fe/Ni/Cu(001) Film. Phys. Rev. Lett. 98, 207205 (2007)

    Article  ADS  Google Scholar 

  15. Choksi R.: Scaling Laws in Microphase Separation of Diblock Copolymers. J. Nonlinear Sci. 11, 223–236 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Choksi R., Conti S., Kohn R.V., Otto F.: Ground state energy scaling laws during the onset and destruction of the intermediate state in a type I superconductor. Comm. Pure Appl. Math. 61, 595–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Conti S.: Branched microstructures: scaling and asymptotic self-similarity. Comm. Pure Appl. Math. 53, 1448–1474 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Conti S.: A lower bound for a variational model for pattern formation in shape-memory alloys. Cont. Mech. Therm. 17, 469–476 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Conti S., Ortiz M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dal Maso, G.: An Introduction to Gamma Convergence. Boston: Birkhäuser, 1993

  21. DeBell K., Mac Issac A.B., Whitehead J.P.: Dipolar effects in magnetic thin films and quasi-two-dimensional systems. Rev. Mod. Phys. 72, 225–257 (2000)

    Article  ADS  Google Scholar 

  22. DeSimone, A., Kohn, R.V., Otto, F., Müller, S.: Recent analytical developments in micromagnetics. In: The Science of Hysteresis II: Physical Modeling, Micromagnetics, and Magnetization Dynamics. G. Bertotti, I. Mayergoyz, eds., London: Elsevier, 2001, pp. 269–381

  23. De Masi A., Orlandi E., Presutti E., Triolo L.: Uniqueness of the instanton profile and global stability in non-local evolution equations. Rend. Mat. Appl. 14, 693–723 (1994)

    MathSciNet  MATH  Google Scholar 

  24. De Masi A., Orlandi E., Presutti E., Triolo L.: Stability of the interface in a model of phase separation. Proc. R. Soc. Edinburgh 124A, 1013–1022 (1994)

    Article  MathSciNet  Google Scholar 

  25. Emery V.J., Kivelson S.A.: Frustrated electronic phase separation and high-temperature superconductors. Phys. C (Amsterdam) 209, 597–621 (1993)

    Article  ADS  Google Scholar 

  26. Giuliani A., Lebowitz J.L., Lieb E.H.: Ising models with long-range dipolar and short-range ferromagnetic interactions. Phys. Rev. B 74, 064420 (2006)

    Article  ADS  Google Scholar 

  27. Giuliani A., Lebowitz J.L., Lieb E.H.: Striped phases in two dimensional dipole systems. Phys. Rev. B 76, 184426 (2007)

    Article  ADS  Google Scholar 

  28. Giuliani A., Lebowitz J.L., Lieb E.H.: Periodic minimizers in 1D local mean field theory. Commun. Math. Phys. 286, 163–177 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Giuliani A., Lebowitz J.L., Lieb E.H.: Modulated phases of a one-dimensional sharp interface model in a magnetic field. Phys. Rev. B 80, 134420 (2009)

    Article  ADS  Google Scholar 

  30. Giuliani A., Lebowitz J.L., Lieb E.H.: Checkerboards, stripes and corner energies in spin models with competing interactions. Phys. Rev. B 84, 064205 (2011)

    Article  ADS  Google Scholar 

  31. Giuliani A., Müller S.: Striped periodic minimizers of a two-dimensional model for martensitic phase transitions. Commun. Math. Phys. 309, 313–339 (2012)

    Article  ADS  MATH  Google Scholar 

  32. Kohn R.V., Muller S.: Branching of twins near an austenite-twinned-martensite interface. Philos. Mag. A 66, 697–715 (1992)

    Article  ADS  Google Scholar 

  33. Kohn R.V., Muller S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lebowitz J.L., Penrose O.: Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition. J. Math. Phys. 7, 98–113 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  35. Maclennan J., Seul M.: Novel stripe textures in nonchiral hexatic liquid-crystal films. Phys. Rev. Lett. 69, 2082 (1992)

    Article  ADS  Google Scholar 

  36. Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. 1, 169–204 (1993)

    Article  MATH  Google Scholar 

  37. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Berlin: Springer, 2009

  38. Robertson J.A., Kivelson S.A., Fradkin E., Fang A.C., Kapitulnik A.: Distinguishing patterns of charge order: Stripes or checkerboards. Phys. Rev. B 74, 134507 (2006)

    Article  ADS  Google Scholar 

  39. Saratz N., Lichtenberger A., Portmann O., Ramsperger U., Vindigni A., Pescia D.: Experimental phase diagram of perpendicularly magnetized ultrathin ferromagnetic films. Phys. Rev. Lett. 104, 077203 (2010)

    Article  ADS  Google Scholar 

  40. Seul M., Andelman D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995)

    Article  ADS  Google Scholar 

  41. Sütö A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005)

    Article  ADS  Google Scholar 

  42. Spivak B., Kivelson S.A.: Transport in two dimensional electronic micro-emulsions. Ann. Phys. (N.Y.) 321, 2071–2115 (2006)

    Article  ADS  MATH  Google Scholar 

  43. Stoycheva A.D., Singer S.J.: Stripe melting in a two-dimensional system with competing interactions. Phys. Rev. Lett. 84, 4657 (2000)

    Article  ADS  Google Scholar 

  44. Ren X., Wei J.: On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31, 909–924 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sear R.P., Frenkel D.: Continuous freezing in three dimensions. Phys. Rev. Lett. 90, 195701 (2003)

    Article  ADS  Google Scholar 

  46. Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  47. Wu J., Choi J., Won C., Wu Y.Z., Scholl A., Doran A., Chanyong H., Qiu Z.Q.: Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001). Phys. Rev. B 79, 014429 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Giuliani.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttà, P., Esposito, R., Giuliani, A. et al. Froth-like Minimizers of a Non-Local Free Energy Functional with Competing Interactions. Commun. Math. Phys. 322, 593–632 (2013). https://doi.org/10.1007/s00220-013-1740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1740-z

Keywords

Navigation