Abstract
In this paper, we study Lie 2-bialgebras, paying special attention to coboundary ones, with the help of the cohomology theory of L ∞-algebras with coefficients in L ∞-modules. We construct examples of strict Lie 2-bialgebras from left-symmetric algebras (also known as pre-Lie algebras) and symplectic Lie algebras (also called quasi-Frobenius Lie algebras).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akman F., Ionescu L.M.: Higher derived brackets and deformation theory. I. J. Homotopy Rel. Struc. 3(1), 385–403 (2008)
Baez, J.C., Crans, A.S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Cat. 12, 492-538 (electronic) (2004)
Baez J.C., Hoffnung A.E., Rogers C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293(3), 701–725 (2010)
Baez J.C., Rogers C.L.: Categorified symplectic geometry and the string Lie 2-algebra. Homology, Homotopy Appl. 12(1), 221–236 (2010)
Bai C.: A unified algebraic approach to the classical Yang-Baxter equation. J. Phys. A: Math. Theor. 40, 11073–11082 (2007)
Bai C.: Left-symmetric bialgebras and an analogy of the classical Yang-Baxter equation. Comm. Comt. Math. 10, 221–260 (2008)
Bai C., Meng D.: The classification of left-symmetric algebra in dimension 2 (in Chinese). Chinese Sci. Bull. 23, 2207 (1996)
Balinsky A.A., Novikov S.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet Math. Dokl. 32, 228–231 (1985)
Burde D.: Simple left-symmetric algebras with solvable Lie algebra. Manus. Math. 95, 397–411 (1998)
Burde D.: Left-symmetric algebras and pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323–357 (2006)
Chari, V., Pressley, A.: A guide to quantum groups. Cambridge: Cambridge University Press, 1994
Chen, Z., Stiénon, M., Xu, P.: Poisson 2-groups. http://arxiv.org/abs/1202.0079v1 [math.ds], 2012
Chen Z., Stiénon M., Xu P.: Weak Lie 2-bialgebra. J. Geom. Phys. 68, 59–68 (2013)
Chu B.Y.: Symplectic homogeneous spaces. Trans. Amer. Math. Soc. 197, 145–159 (1974)
Dehling M.: Shifted L ∞-bialgebras. Master thesis. Göttingen University, http://www.uni-math.gwdg.de/mdehling/publ/ma.pdf, 2011
Drinfeld V.: Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations. Soviet Math. Dokl. 27, 68–71 (1983)
Gan W.L.: Koszul duality for dioperads. Math. Res. Lett. 10(1), 109–124 (2003)
Khovanov M., Lauda A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)
Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In: Mathematical aspects of classical field theory (Seattle, WA, 1991), Volume 132 of Contemp. Math., Providence, RI: Amer. Math. Soc., 1992, pp. 459–489
Kravchenko O.: Strongly homotopy Lie bialgebras and Lie quasi-bialgebras. Lett. Math. Phys. 81(1), 19–40 (2007)
Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)
Lada T., Stasheff J.: Introduction to SH Lie algebras for physicists. Internat. J. Theor. Phys. 32, 1087–1103 (1993)
Mehta R.: On homotopy Poisson actions and reduction of symplectic Q-manifolds. Diff. Geom. Appl. 29(3), 319–328 (2011)
Merkulov S.A.: Lectures on groups, Poisson geometry and deformation quantization. Contemp. Math. 450, 223–257 (2008)
Merkulov S.A.: PROP profile of Poisson geometry. Commun. Math. Phys. 262(1), 117–135 (2006)
Penkava, M.: L-infinity algebras and their cohomology. http://arxiv.org/abs/q-alg/9512014v1, 1995
Pei Y., Bai C.: Realizations of conformal current-type Lie algebras. J. Math. Phys. 51, 052302 (2010)
Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley, 1999, http://arxiv.org/abs/math.DG/9910078v1, 1999
Roytenberg D.: On weak Lie 2-algebras. AIP Conf. Proc. 956, 180–198 (2007)
Sheng Y., Zhu C.: Semidirect products of representations up to homotopy. Pa. J. Math. 249(1), 211–236 (2011)
Sheng Y., Zhu C.: Integration of semidirect product Lie 2-algebras. Int. J. Geom. Methods Mod. Phys. 9(5), 1250043 (2012)
Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. In: Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Berlin: Springer, 1992, pp. 120–137
Vallette B.: A Koszul duality for PROPs. Trans. Amer. Math. Soc. 359(10), 4865–4943 (2007)
Voronov T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202, 133–153 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Research supported by NSFC (10920161, 11101179, 11271202), SRFDP (200800550015, 20100061120096) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.
Rights and permissions
About this article
Cite this article
Bai, C., Sheng, Y. & Zhu, C. Lie 2-Bialgebras. Commun. Math. Phys. 320, 149–172 (2013). https://doi.org/10.1007/s00220-013-1712-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1712-3