Skip to main content
Log in

Abstract

In this paper, we study Lie 2-bialgebras, paying special attention to coboundary ones, with the help of the cohomology theory of L -algebras with coefficients in L -modules. We construct examples of strict Lie 2-bialgebras from left-symmetric algebras (also known as pre-Lie algebras) and symplectic Lie algebras (also called quasi-Frobenius Lie algebras).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Akman F., Ionescu L.M.: Higher derived brackets and deformation theory. I. J. Homotopy Rel. Struc. 3(1), 385–403 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Baez, J.C., Crans, A.S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Cat. 12, 492-538 (electronic) (2004)

    Google Scholar 

  3. Baez J.C., Hoffnung A.E., Rogers C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293(3), 701–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baez J.C., Rogers C.L.: Categorified symplectic geometry and the string Lie 2-algebra. Homology, Homotopy Appl. 12(1), 221–236 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bai C.: A unified algebraic approach to the classical Yang-Baxter equation. J. Phys. A: Math. Theor. 40, 11073–11082 (2007)

    Article  ADS  MATH  Google Scholar 

  6. Bai C.: Left-symmetric bialgebras and an analogy of the classical Yang-Baxter equation. Comm. Comt. Math. 10, 221–260 (2008)

    Article  MATH  Google Scholar 

  7. Bai C., Meng D.: The classification of left-symmetric algebra in dimension 2 (in Chinese). Chinese Sci. Bull. 23, 2207 (1996)

    Google Scholar 

  8. Balinsky A.A., Novikov S.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet Math. Dokl. 32, 228–231 (1985)

    Google Scholar 

  9. Burde D.: Simple left-symmetric algebras with solvable Lie algebra. Manus. Math. 95, 397–411 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Burde D.: Left-symmetric algebras and pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chari, V., Pressley, A.: A guide to quantum groups. Cambridge: Cambridge University Press, 1994

  12. Chen, Z., Stiénon, M., Xu, P.: Poisson 2-groups. http://arxiv.org/abs/1202.0079v1 [math.ds], 2012

  13. Chen Z., Stiénon M., Xu P.: Weak Lie 2-bialgebra. J. Geom. Phys. 68, 59–68 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chu B.Y.: Symplectic homogeneous spaces. Trans. Amer. Math. Soc. 197, 145–159 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehling M.: Shifted L -bialgebras. Master thesis. Göttingen University, http://www.uni-math.gwdg.de/mdehling/publ/ma.pdf, 2011

  16. Drinfeld V.: Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations. Soviet Math. Dokl. 27, 68–71 (1983)

    MathSciNet  Google Scholar 

  17. Gan W.L.: Koszul duality for dioperads. Math. Res. Lett. 10(1), 109–124 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  18. Khovanov M., Lauda A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In: Mathematical aspects of classical field theory (Seattle, WA, 1991), Volume 132 of Contemp. Math., Providence, RI: Amer. Math. Soc., 1992, pp. 459–489

  20. Kravchenko O.: Strongly homotopy Lie bialgebras and Lie quasi-bialgebras. Lett. Math. Phys. 81(1), 19–40 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lada T., Stasheff J.: Introduction to SH Lie algebras for physicists. Internat. J. Theor. Phys. 32, 1087–1103 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mehta R.: On homotopy Poisson actions and reduction of symplectic Q-manifolds. Diff. Geom. Appl. 29(3), 319–328 (2011)

    Article  MATH  Google Scholar 

  24. Merkulov S.A.: Lectures on groups, Poisson geometry and deformation quantization. Contemp. Math. 450, 223–257 (2008)

    Article  MathSciNet  Google Scholar 

  25. Merkulov S.A.: PROP profile of Poisson geometry. Commun. Math. Phys. 262(1), 117–135 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Penkava, M.: L-infinity algebras and their cohomology. http://arxiv.org/abs/q-alg/9512014v1, 1995

  27. Pei Y., Bai C.: Realizations of conformal current-type Lie algebras. J. Math. Phys. 51, 052302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  28. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley, 1999, http://arxiv.org/abs/math.DG/9910078v1, 1999

  29. Roytenberg D.: On weak Lie 2-algebras. AIP Conf. Proc. 956, 180–198 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Sheng Y., Zhu C.: Semidirect products of representations up to homotopy. Pa. J. Math. 249(1), 211–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sheng Y., Zhu C.: Integration of semidirect product Lie 2-algebras. Int. J. Geom. Methods Mod. Phys. 9(5), 1250043 (2012)

    Article  MathSciNet  Google Scholar 

  32. Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. In: Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Berlin: Springer, 1992, pp. 120–137

  33. Vallette B.: A Koszul duality for PROPs. Trans. Amer. Math. Soc. 359(10), 4865–4943 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Voronov T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202, 133–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Sheng.

Additional information

Communicated by Y. Kawahigashi

Research supported by NSFC (10920161, 11101179, 11271202), SRFDP (200800550015, 20100061120096) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C., Sheng, Y. & Zhu, C. Lie 2-Bialgebras. Commun. Math. Phys. 320, 149–172 (2013). https://doi.org/10.1007/s00220-013-1712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1712-3

Keywords