Skip to main content
Log in

Multifractal Formalism for Almost all Self-Affine Measures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We conduct the multifractal analysis of self-affine measures for “almost all” family of affine maps. Besides partially extending Falconer’s formula of L q-spectrum outside the range 1 < q ≤ 2, the multifractal formalism is also partially verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahroun F., Bhouri I.: Multifractals and projections. Extracta Math. 21, 83–91 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Barral J., Bhouri I.: How projections affect the validity of the multifractal formalism. Erg. Th. Dyn. Sys. 31, 673–701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barral J., Feng D.J.: Weighted thermodynamic formalism on subshifts and applications. Asian J. Math. 16, 319–352 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Barral J., Mensi M.: Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum. Erg. Th. Dyn. Sys. 27, 1419–1443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Erg. Th. Dyn. Sys. 16, 871–927 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Nasr F.: Analyse multifractale de mesures. C. R. Acad. Sci. Paris Sér. I Math. 319, 807–810 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. No. 470, Berlin-Heidelberg-New York: Springer-Verlag, 1975

  8. Brown G., Michon G., Peyrière J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)

    Article  ADS  MATH  Google Scholar 

  9. Cao Y.L., Feng D.J., Huang W.: The thermodynamic formalism for sub-additive potentials. Disc. Cont. Dyn. Syst. 20, 639–657 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Cawley R., Mauldin R.D.: Multifractal decompositions of Moran fractals. Adv. Math. 92, 196–236 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Collet P., Lebowitz J.L., Porzio A.: The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Conway, J.B.: A course in functional analysis. New York: Springer-Verlag, 1985

  13. Falconer K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103, 339–350 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falconer K.J.: A subadditive thermodynamic formalism for mixing repellers. J. Phys. A 21, L737–L742 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Falconer K.J.: Generalized dimensions of measures on self-affine sets. Nonlinearity 12, 877–891 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Falconer K.J.: Generalised dimensions of measures on almost self-affine sets. Nonlinearity 23, 1047–1069 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Falconer, K.J., Miao, J.: Local dimensions of measures on self-affine sets. http://arxiv.org/abs/1105.2411v1 [math.MG], 2011

  18. Falconer K.J., Sloan A.: Continuity of subadditive pressure for self-affine sets. Real Analysis Exchange 34, 413–427 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Feng D.J.: Gibbs properties of self-conformal measures and the multifractal formalism. Erg. Th. Dyn. Sys. 27, 787–812 (2007)

    Article  MATH  Google Scholar 

  20. Feng D.J.: Equilibrium states for factor maps between subshifts. Adv. Math. 226, 2470–2502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng D.J.: Multifractal analysis of Bernoulli convolutions associated with Salem numbers. Adv. Math. 229, 3052–3077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng D.J., Käenmäki A.: Equilibrium states of the pressure function for products of matrices. Disc. Con. Dyn. Syst. 30, 699–708 (2011)

    Article  MATH  Google Scholar 

  23. Feng D.J., Hu H.: Dimension theory of iterated function systems. Comm. Pure Appl. Math. 62, 1435–1500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng D.J., Huang W.: Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys. 297, 1–43 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Feng D.J., Lau K.S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Feng D.J., Lau K.S.: Multifractal formalism for self-similar measures with weak separation condition. J. Math. Pures Appl. 92, 407–428 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Feng D.J., Wang Y.: A class of self-affine sets and self-affine measures. J. Fourier Anal. Appl. 11, 107–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency in turbulence. In: Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics eds. M. Ghil, R. Benzi and G. Parisi, Amsterdam: North-Holland, 1985, pp. 84–88

  29. Halsey T.C., Jensen M.H., Kadnoff L.P., Procaccia I., Shraiman B.I.: Fractal measures and their singularities: the characterisation of strange sets. Phys. Rev. A. 33, 1141–1151 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hutchinson J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jessen B., Wintner A.: Distribution functions and the Riemann zeta function. Trans. Amer. Math. Soc. 38, 48–88 (1935)

    Article  MathSciNet  Google Scholar 

  32. Jordan, T.: Private communication

  33. Jordan T., Pollicott M., Simon K.: Hausdorff dimension for randomly perturbed self affine attractors. Commun. Math. Phys. 270, 519–544 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Jordan T., Rams M.: Multifractal analysis for Bedford-McMullen carpets. Math. Proc. Camb. Phil. Soc. 150, 147–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jordan T., Shmerkin P., Solomyak B.: Multifractal structure of Bernoulli convolutions. Math. Proc. Camb. Phil. Soc. 151, 521–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jordan T., Simon K.: Multifractal analysis for Birkhoff averages for some self-affine IFS. Dyn. Sys. 22, 469–483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Käenmäki A.: On natural invariant measures on generalised iterated function systems. Ann. Acad. Sci. Fenn. Math. 29, 419–458 (2004)

    MathSciNet  MATH  Google Scholar 

  38. King J.F.: The singularity spectrum for general Sierpinski carpets. Adv. Math. 116, 1–8 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lau K.S., Ngai S.M.: Multifractal measures and a weak separation condition. Adv. Math. 141, 45–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mauldin R.D., Simon K.: The equivalence of some Bernoulli convolutions to Lebesgue measure. Proc. Amer. Math. Soc. 126, 2733–2736 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ngai S.M.: A dimension result arising from the L q-spectrum of a measure. Proc. Amer. Math. Soc. 125, 2943–2951 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Olivier E.: Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures. Nonlinearity 12, 1571–1585 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Olsen L.: A multifractal formalism. Adv. Math. 116, 82–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Olsen L.: Self-affine multifractal Sierpinski sponges in \({\mathbb{R}^d}\) . Pacific J. Math. 183, 143–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Patzschke N.: Self-conformal multifractal measures. Adv. in Appl. Math. 19, 486–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pesin, Ya.B.: Dimension theory in dynamical systems. Contemporary views and applications. Chicago, IL: University of Chicago Press, 1997

  47. Rand D.A.: The singularity spectrum f(α) for cookie-cutters. Erg. Th. Dyn. Sys. 9, 527–541 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shmerkin P.: A modified multifractal formalism for a class of self-similar measures with overlap. Asian J. Math. 9, 323–348 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Shmerkin P.: Overlapping self-affine sets. Indiana Univ. Math. J. 55(4), 1291–1331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Solomyak B.: Measure and dimension for some fractal families. Math. Proc. Camb. Phils. Soc. 124, 531–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Testud B.: Mesures quasi-Bernoulli au sens faible: résultats et exemples. Ann. Inst. Poincaré Prob. Stat. 42, 1–35 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Walters, P.: An introduction to ergodic theory. Berlin-Heidelberg-New York: Springer-Verlag, 1982

  53. Young L.S.: Dimension, entropy and Lyapunov exponents. Erg. Th. Dyn. Sys. 2, 109–124 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jun Feng.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barral, J., Feng, DJ. Multifractal Formalism for Almost all Self-Affine Measures. Commun. Math. Phys. 318, 473–504 (2013). https://doi.org/10.1007/s00220-013-1676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1676-3

Keywords

Navigation