Skip to main content
Log in

Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Landau Hamiltonian (i.e. the 2D Schrödinger operator with constant magnetic field) perturbed by an electric potential V which decays sufficiently fast at infinity. The spectrum of the perturbed Hamiltonian consists of clusters of eigenvalues which accumulate to the Landau levels. Applying a suitable version of the anti-Wick quantization, we investigate the asymptotic distribution of the eigenvalues within a given cluster as the number of the cluster tends to infinity. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the Radon transform of the perturbation potential V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55, Washington, DC: National Bureau of Standards, 1964

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, New York: Springer-Verlag, 1989

  3. Berezin F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974) (Russian)

    MathSciNet  Google Scholar 

  4. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Dordrecht: Kluwer Academic Publishers, 1991

  5. Birman, M.S˘., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Dordrecht, D. Reidel Publishing Company, 1987

  6. Boulkhemair A.: L 2 estimates for Weyl quantization. J. Funct. Anal. 165, 173–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Broderix K., Heldt N., Leschke H.: Weyl-invariant random Hamiltonians and their relation to translational-invariant random potentials on Landau levels. J. Phys. A 93, 3945–3952 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bulger, D., Pushnitski, A.: The spectral density of the scattering matrix for high energies. Commun. Math. Phys. 316(3), 693–704 (2012)

    Google Scholar 

  9. Colin de Verdière Y.: Sur le spectre des opérateurs elliptiques bicaractéristiques toutes périodiques. Comment. Math. Helv. 54(3), 508–522 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dimassi M., Petkov V.: Spectral shift function for operators with crossed magnetic and electric fields. Rev. Math. Phys. 22, 355–380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimassi M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Notice Series 268. Cambridge: Cambridge University Press, 1999

  12. Fedoryuk, M.V.: Asymptotics: Integrals and Series (Russian). Mathematical Reference Library, Moscow: Nauka, 1987

  13. Fernández C., Raikov G.D.: On the singularities of the magnetic spectral shift function at the Landau levels. Ann. H. Poincaré 5, 381–403 (2004)

    Article  MATH  Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, New York: Academic Press, 1965

  15. Graffi S., Paul T.: The Schrödinger equation and canonical perturbation theory. Commun. Math. Phys. 108, 25–40 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Guillemin, V., Sternberg, S.: Geometric Asymptotics, Mathematical Surveys, 14, Providence, RI: Amer. Math. Soc., 1977

  17. Hall, B.C.: Holomorphic methods in analysis and mathematical physics. In: First Summer School in Analysis and Mathematical Physics, Cuernavaca Morelos, 1998, Contemp. Math. 260, Amer. Math. Soc., Providence, RI: 2000, pp. 1–59

  18. Helffer, B., Sjöstrand, J.: \’Equation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys., 345 Berlin: Springer, 1989, pp. 118–197

  19. Helgason, S.: The Radon Transform. Second edition, Boston: Birkhäuser, 1999

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators. Corrected Second Printing, Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1994

  21. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics, Berlin: Springer-Verlag, 1998

  22. Korotyaev E., Pushnitski A.: A trace formula and high-energy spectral asymptotics for the perturbed Landau Hamiltonian. J. Funct. Anal. 217, 221–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Landau L.: Diamagnetismus der Metalle. Z. Physik 64, 629–637 (1930)

    Article  ADS  MATH  Google Scholar 

  24. Paul, T.: Semi-classical methods with emphasis on coherent states. In: Quasiclassical methods (Minneapolis, MN, 1995), IMA Vol. Math. Appl., 95, New York: Springer, 1997, pp. 51–88

  25. Raikov, G.D.: Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips. Commun. P.D.E. 15, 407–434 (1990); Errata: Commun. P.D.E. 18, 1977–1979 (1993)

  26. Raikov G.D.: Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields. Commun. P.D.E. 23, 1583–1620 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reed, M., Simon, B.: it Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness. New York: Academic Press, 1975

  28. Roy S.M., Singh V.: Generalized coherent states and the uncertainty principle. Phys. Rev. D 25, 3413–3416 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  29. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Second Edition, Berlin-Heidelberg-New York: Springer-Verlag, 2001

  30. Suetin, P.K.: Classical Orthogonal Polynomials (in Russian). Moscow: Fizmatgiz, 3d ed., 2005

  31. Taylor, M.E.: Pseudodifferential Operators. Princeton Mathematical Series, 34, Princeton, NJ: Princeton University Press, 1981

  32. Taylor, M.E.: Partial Differential Equations. II. Qualitative studies of linear equations. Applied Mathematical Sciences, 116, New York: Springer-Verlag, 1996

  33. Thomas L., Villegas-Blas C.: Asymptotic of Rydberg states for the hydrogen atom. Comm. Math. Phys. 187, 623–645 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Thomas L., Wassell S.: Semiclassical approximation for Schrödinger operators on a 2-sphere at high energy. J. Math. Phys. 36, 5480–5505 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Uribe A., Villegas-Blas C.: Asymptotics of spectral clusters for a perturbation of the hydrogen atom. Commun. Math. Phys. 280, 123–144 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Villegas-Blas, C., The Laplacian on the n-sphere, the hydrogen atom and the Bargmann space representation. Ph.D. Thesis, Mathematics Department, University of Virginia, 1996

  37. Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pushnitski.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushnitski, A., Raikov, G. & Villegas-Blas, C. Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian. Commun. Math. Phys. 320, 425–453 (2013). https://doi.org/10.1007/s00220-012-1643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1643-4

Keywords

Navigation