Skip to main content
Log in

Effective Stability for Gevrey and Finitely Differentiable Prevalent Hamiltonians

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For perturbations of integrable Hamiltonian systems, the Nekhoroshev theorem shows that all solutions are stable for an exponentially long interval of time, provided the integrable part satisfies a steepness condition and the system is analytic. This fundamental result has been extended in two distinct directions. The first one is due to Niederman, who showed that under the analyticity assumption, the result holds true for a prevalent class of integrable systems which is much wider than the steep systems. The second one is due to Marco-Sauzin but it is limited to quasi-convex integrable systems, for which they showed exponential stability if the system is assumed to be only Gevrey regular. If the system is finitely differentiable, we showed polynomial stability, still in the quasi-convex case. The goal of this work is to generalize all these results in a unified way, by proving exponential or polynomial stability for Gevrey or finitely differentiable perturbations of prevalent integrable Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. Doklady 5, 581–585 (1964)

    Google Scholar 

  2. Bambusi D.: Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z. 230(2), 345–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti M., Biasco L., Bolle P.: Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. (9) 82(6), 613–664 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benettin G., Gallavotti G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys. 44, 293–338 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Benettin G., Galgani L., Giorgilli A.: A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech. 37, 1–25 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bounemoura, A., Niederman, L.: Generic Nekhoroshev theory without small divisors. Ann. Inst. Fourier, to appear, available at http://w3.impa.br/~abed/NwsdFinal.pdf, Nov. 2010

  7. Bounemoura, A.: Generic super-exponential stability of invariant tori. Erg. Th. Dyn. Syst. (2010), to appear, doi:10.1017/s0143385710000441, Oct. 2010

  8. Bounemoura A.: Nekhoroshev theory for finitely differentiable quasi-convex Hamiltonians. J. Diff. Eqs. 249(11), 2905–2920 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bounemoura, A., Pennamen, E.: Instability for a priori unstable Hamiltonian systems: a dynamical approach. Discrete and Continuous Dynamical Systems - Series A (2011), to appear, available at http://w3.impa.br/~abed/poly4.pdf, Oct 2010

  10. Hunt, B., Kaloshin, V.: Prevalence. H. Broer, F. Takens, B. Hasselblatt (eds.), Handbook of Dynamical Systems Volume 3, Amsterdam: North Holland Title, Elsevier, 2010

  11. Kolmogorov A.N.: On the preservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk. SSSR 98, 527–530 (1954)

    MathSciNet  MATH  Google Scholar 

  12. Lochak P.: Canonical perturbation theory via simultaneous approximation. Russ. Math. Surv. 47(6), 57–133 (1992)

    Article  MathSciNet  Google Scholar 

  13. Morbidelli A., Giorgilli A.: Superexponential stability of KAM tori. J. Stat. Phys. 78, 1607–1617 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Mitev T., Popov G.: Gevrey normal form and effective stability of Lagrangian tori. Discrete Contin. Dyn. Syst. 3(4), 643–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marco J.-P., Sauzin D.: Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems. Publ. Math. Inst. Hautes Études Sci. 96, 199–275 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Nekhoroshev N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russian Math. Surveys 32(6), 1–65 (1977)

    Article  ADS  MATH  Google Scholar 

  17. Nekhoroshev N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems II. Trudy Sem. Petrovs 5, 5–50 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Niederman L.: Exponential stability for small perturbations of steep integrable Hamiltonian systems. Erg. Th. Dyn. Sys. 24(2), 593–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niederman L.: Prevalence of exponential stability among nearly integrable Hamiltonian systems. Erg. Th. Dyn. Sys. 27(3), 905–928 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ott W., Yorke J.A.: Prevalence. Bull. of the Amer. Math. Soc. 42(3), 263–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Popov G.: KAM theorem for Gevrey Hamiltonians. Erg. Th. Dyn. Sys. 24(5), 1753–1786 (2004)

    Article  MATH  Google Scholar 

  22. Pöschel J.: Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z. 213, 187–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pöschel J.: On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi. Nonlinearity 12(6), 1587–1600 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Rüssmann H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6(2), 119–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Salamon D.A.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Elect. J. 10, 1–37 (2004)

    MathSciNet  Google Scholar 

  26. Yomdin Y., Comte G.: Tame geometry with application in smooth analysis. Lecture Notes in Mathematics. Springer Verlag, Berlin (2004)

    Book  Google Scholar 

  27. Yomdin Y.: The geometry of critical and near-critical values of differentiable mappings. Math. Ann. 264, 495–515 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abed Bounemoura.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounemoura, A. Effective Stability for Gevrey and Finitely Differentiable Prevalent Hamiltonians. Commun. Math. Phys. 307, 157–183 (2011). https://doi.org/10.1007/s00220-011-1306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1306-x

Keywords

Navigation