Skip to main content
Log in

Comment on “Random Quantum Circuits are Approximate 2-designs” by A.W. Harrow and R.A. Low (Commun. Math. Phys. 291, 257–302 (2009))

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

The Original Article was published on 17 July 2009

Abstract

In [A.W. Harrow and R.A. Low, Commun. Math. Phys. 291(1):257–302 (2009)], it was shown that a quantum circuit composed of random 2-qubit gates converges to an approximate quantum 2-design in polynomial time. We point out and correct a flaw in one of the paper’s main arguments. Our alternative argument highlights the role played by transpositions induced by the random gates in achieving convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proceedings of the 22nd Annual IEEE Conference on Computational Complexity, Los Alanitos, CA: IEEE, 2007, pp. 129–140

  2. Emerson J., Weinstein Y.S., Saraceno M., Lloyd S., Cory D.G.: Pseudo-random unitary operators for quantum information processing. Science 302, 2098 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: Constructions and applications. Commun. Math. Phy. 250(2), 371–391 (2004)

    MATH  ADS  MathSciNet  Google Scholar 

  4. Bendersky A., Pastawski F., Paz J.P.: Selective and efficient estimation of parameters for quantum process tomography. Phys. Rev. Lett. 100(19), 190403 (2008)

    Article  ADS  Google Scholar 

  5. Harrow A., Hayden P., Leung D.: Superdense coding of quantum states. Phys. Rev. Lett. 92(18), 187901 (2004)

    Article  ADS  Google Scholar 

  6. Harrow A.W., Low R.A.: Random quantum circuits are approximate 2-designs. Commun. Math. Phy. 291(1), 257–302 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. DiVincenzo D.P., Leung D.W., Terhal B.M.: Quantum Data Hiding. IEEE Trans. Inf Theory 48(3), 580–599 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gross D., Audenaert K., Eisert J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dankert C., Cleve R., Emerson J., Livine E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80(1), 012304 (2009)

    Article  ADS  Google Scholar 

  10. Brown W., Viola L.: Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104, 250501 (2010)

    Article  ADS  Google Scholar 

  11. Dahlsten O.C.O., Oliveira R., Plenio M.B.: The emergence of typical entanglement in two-party random processes. J. Phys. A-Math. Theo. 40, 8081–8108 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Oliveira R., Dahlsten O.C.O., Plenio M.B.: Generic entanglement can be generated efficiently. Phys. Rev. Lett. 98, 130502 (2007)

    Article  ADS  Google Scholar 

  13. Feller W.: An Introduction to Probability Theory and Its Applications. Volume 1. New York, Wiley, 3rd edition, (1968)

    Google Scholar 

  14. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times: With a Chapter on Coupling from the Past by James G. Propp and David B. Wilson. Providence, RI: Amer. Math. Soc., 2008

  15. Aldous D., Diaconis P.: Shuffling cards and stopping times. The American Mathematical Monthly 93(5), 333–348 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Diaconis P., Shahshahani M.: Generating a random permutation with random transpositions. Probability Theory and Related Fields 57(2), 159–179 (1981)

    MATH  MathSciNet  Google Scholar 

  17. Diaconis, P.: Group representations in probability and statistics. Hayward, CA: Inst. Math. Stat., 1988

  18. Knuth D.E.: The art of computer programming, Vol. 2: Seminumerical algorithms. Reading, MA, Addison-Wesley, 3rd edition (1997)

    Google Scholar 

  19. Boyd S., Diaconis P., Parrilo P., Xiao L.: Symmetry Analysis of Reversible Markov Chains. Internet Mathematics 2(1), 31 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Diniz, I. Tuche de A.: Algoritmos quânticos para a geração de unitários pseudo-aleatórios. Master’s thesis, Universidade Federal Fluminense, Brazil, 2009

  21. Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jonathan.

Additional information

Communicated by M.B. Ruskai

This comment refers to doi:10.1007/s00220-009-0873-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, I.T., Jonathan, D. Comment on “Random Quantum Circuits are Approximate 2-designs” by A.W. Harrow and R.A. Low (Commun. Math. Phys. 291, 257–302 (2009)). Commun. Math. Phys. 304, 281–293 (2011). https://doi.org/10.1007/s00220-011-1217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1217-x

Keywords