Skip to main content
Log in

Dirac Field on Moyal-Minkowski Spacetime and Non-commutative Potential Scattering

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantized free Dirac field is considered on Minkowski spacetime (of general dimension). The Dirac field is coupled to an external scalar potential whose support is finite in time and which acts by a Moyal-deformed multiplication with respect to the spatial variables. The Moyal-deformed multiplication corresponds to the product of the algebra of a Moyal plane described in the setting of spectral geometry. It will be explained how this leads to an interpretation of the Dirac field as a quantum field theory on Moyal-deformed Minkowski spacetime (with commutative time) in a setting of Lorentzian spectral geometries of which some basic aspects will be sketched. The scattering transformation will be shown to be unitarily implementable in the canonical vacuum representation of the Dirac field. Furthermore, it will be indicated how the functional derivatives of the ensuing unitary scattering operators with respect to the strength of the non-commutative potential induce, in the spirit of Bogoliubov’s formula, quantum field operators (corresponding to observables) depending on the elements of the non-commutative algebra of Moyal-Minkowski spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: Bogoliubov automorphisms and Fock representations of canonical anticommutation relations. Cont. Math. Soc. 62, 23 (1987)

    MathSciNet  Google Scholar 

  2. Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. RIMS, Kyoto Univ. 6, 385 (1970/71)

    Google Scholar 

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. ESI Lectures in Mathematics and Physics, Zürich: Eur. Math. Soc., 2007

  4. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys. 237, 221 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  5. Bahns D., Waldmann S.: Locally noncommutative spacetimes. Rev. Math. Phys. 19, 273 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogoliubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Wiley- Interscience, New York (1959)

    Google Scholar 

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, Vol. 1. Berlin- Heidelberg-New York: Springer, 2002

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. Vol. 2. Berlin- Heidelberg-New York: Springer, 2002

  9. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  10. Buchholz, D., Summers, S.J.: Warped convolutions: A novel tool in the construction of quantum field theories. http://arxiv.org/abs/0806.0349v1[math-ph], 2008

  11. Carey A., Ruijsenaars S.N.M.: On Fermion gauge groups, current algebras and Kac-Moody algebras. Acta Appl. Math. 10, 1 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Connes A.: Noncommutative Geometry. Academic Press, London-New York (1994)

    MATH  Google Scholar 

  13. Connes A.: Gravity coupled with matter and the foundation of non commutative geometry. Commun. Math. Phys. 182, 155 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Connes, A.: On the spectral characterization of manifolds. http://arxiv.org/abs/0810.2088v1[math.OA], 2008

  15. Connes A., Lott J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 18B, 29 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  16. Coquereaux, R.: Spinors, reflections and Clifford algebras: A Review. In: Spinors in Physics and Geometry (Trieste, 1986), Singapore: World Scientific, 1988, pp. 135–190

  17. Dimock J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Doplicher S., Fredenhagen K., Roberts J.E.: The Quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Fredenhagen K., Hertel J.: Local algebras of observables and point-like localized fields. Commun. Math. Phys. 80, 555 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Gayral V., Gracia-Bondía J., Iochum B., Schücker T., Várilly J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569 (2004)

    Article  MATH  ADS  Google Scholar 

  21. Gracia-Bondía J.M., Várilly J.C.: Algebras of distributions suitable for phase-space quantum mechan- ics 1. J. Math. Phys. 29, 869–879 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Gracia-Bondía J.M., Várilly J.C.: On the ultraviolet behavior of quantum fields over noncommutative manifolds. Int. J. Mod. Phys. A14, 1305 (1999)

    ADS  Google Scholar 

  23. Gracia-Bondía J.M., Várilly J.C., Figueroa H.: Elements of Noncommutative Geometry. Birkhäuser, Basel (2000)

    Google Scholar 

  24. Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 0809, 131 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Grosse H., Wulkenhaar R.: Renormalization of \({\phi^{4}}\) theory on noncommutative R 4 in the matrix base. Commun. Math. Phys. 256, 305 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Haag R.: Local Quantum Physics 2nd ed. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  27. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Hawkins E.: Hamiltonian gravity and noncommutative geometry. Commun. Math. Phys. 187, 471 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Kopf T., Paschke M.: A spectral quadruple for de Sitter space. J. Math. Phys. 43, 818 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Langmann E., Mickelsson J.: Scattering matrix in external field problems. J. Math. Phys. 37, 3933 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Moretti V.: Aspects of noncommutative Lorentzian geometry for globally hyperbolic space-times. Commun. Math. Phys. 232, 189 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Palmer J.: Scattering automorphisms of the Dirac field. J. Math. Anal. Appl. 64, 189 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  33. Paschke, M., Rennie, A., Verch, R.: Lorentzian spectral triples. In preparation

  34. Paschke M., Verch R.: Local covariant quantum field theory over spectral geometries. Class. Quant. Grav. 21, 5299 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Reed M., Simon B.: Fourier Analysis, Self-Adjointness; Methods of Modern Mathematical Physics II. Academic Press, New York (1975)

    MATH  Google Scholar 

  36. Rennie, A., Varilly, J.C.: Reconstruction of manifolds in noncommutative geometry. http://arxiv.org/abs/math.OA/0610418, 2006

  37. Rivasseau V., Vignes-Tourneret F., Wulkenhaar R.: Renormalization of noncommutative \({\phi^{4}}\) -theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Roberts, J.E.: More Lectures on Algebraic Quantum Field Theory. Noncommutative Geometry, 263–342, Lecture Notes in Math. 1831, Berlin: Springer-Verlag, 2004, pp. 263–342

  39. Shale D., Stinespring W.F.: Spinor representations of infinite orthogonal groups. J. Math. & Mech. 14, 315–322 (1965)

    MATH  MathSciNet  Google Scholar 

  40. Streater R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1968)

    Google Scholar 

  41. Strohmaier A.: On noncommutative and semi-Riemannian geometry. J. Geom. Phys. 56, 175 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Szabo R.: Quantum field theory on noncommutative spaces. Phys. Rep. 387, 207 (2003)

    Article  ADS  Google Scholar 

  43. Thaller B.: The Dirac Equation. Springer-Verlag, Berlin (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Verch.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Klaus Fredenhagen on the occasion of his 61st birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borris, M., Verch, R. Dirac Field on Moyal-Minkowski Spacetime and Non-commutative Potential Scattering. Commun. Math. Phys. 293, 399–448 (2010). https://doi.org/10.1007/s00220-009-0905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0905-2

Keywords

Navigation