Skip to main content
Log in

Rotational Surfaces in \({\mathbb{L}^3}\) and Solutions of the Nonlinear Sigma Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Gauss map of non-degenerate surfaces in the three-dimensional Minkowski space are viewed as dynamical fields of the two-dimensional O(2, 1) Nonlinear Sigma Model. In this setting, the moduli space of solutions with rotational symmetry is completely determined. Essentially, the solutions are warped products of orbits of the 1-dimensional groups of isometries and elastic curves in either a de Sitter plane, a hyperbolic plane or an anti de Sitter plane. The main tools are the equivalence of the two-dimensional O(2, 1) Nonlinear Sigma Model and the Willmore problem, and the description of the surfaces with rotational symmetry. A complete classification of such surfaces is obtained in this paper. Indeed, a huge new family of Lorentzian rotational surfaces with a space-like axis is presented. The description of this new class of surfaces is based on a technique of surgery and a gluing process, which is illustrated by an algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albertsson C., Lindstrom U., Zabzine M.: Commun. Math. Phys. 233, 403 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  2. Albertsson C., Lindstrom U., Zabzine M.: Nucl. Phys. B 678, 295 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Anzellotti G., Serapioni R., Tamanini I.: Indiana Univ. Math. J. 39, 617 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anzellotti, G., Delladio, S.: Proceedings of a Conference in Honor of the 70th Birthday of Robert Finn, Stanford University. Boston-Cambridge, MA: International Press Incorporated, 1995

  5. Barros M.: Phys. Lett. B 553, 325 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Barros M., Caballero M., Ortega M.: J. Geom. Phys. 57, 177 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Belavin A.A., Polyakov A.M.: JETP Lett. 22, 245 (1975)

    ADS  Google Scholar 

  8. Birman G.S., Nomizu K.: Michigan Math. J. 31, 77 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bracken, P.: The generalized Weiertrass system for nonconstant mean curvature surfaces and the nonlinear sigma model. http://arXiv.org/abs/math-ph/0607048v1, 2006

  10. Bredthauer, A.: Tensionless Strings and Supersymmetric Sigma Models. Aspects of the Target Space Geometry. Uppsala: Acta Universitatis Upsaliensis, 2006

  11. Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for Engineers an Scientists. Springer-Verlag, Berlin-Heidelberg-New York (1971)

    Google Scholar 

  12. Capovilla R., Guven J.: J. Phys. A 38, 2593 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Cavalcante F.S.A., Cunha M.S., Almeida C.A.S.: Phys. Lett. B 475, 315 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Chelnokov V.E., Zeitlin M.G.: Phys. Lett. A 104, 329 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Davis H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover Publications, Inc., New York (1962)

    MATH  Google Scholar 

  16. Davis A.C., Macfarlane A.J., van Holten J.W.: Nucl. Phys. B 216, 493 (1983)

    Article  ADS  Google Scholar 

  17. Do Carmo M.P., Dajzer M.: Tôhoku Math. J. 34, 425 (1982)

    Article  MATH  Google Scholar 

  18. Gruszczak J.: J. Phys. A 14, 3247 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hano J., Nomizu K.: Tôhoku Math. J. (2) 36, 427 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Howe P.S., Lindstrom U., Stojevic V.: JHEP 0601, 159 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Langer J., Singer D.A.: J. Diff. Geom. 20, 1 (1984)

    MATH  MathSciNet  Google Scholar 

  22. Laughlin R.B.: Phys. Rev. Lett. 60, 2677 (1988)

    Article  ADS  Google Scholar 

  23. Mieck, B.: Nonlinear sigma model for a condensate composed of fermionic atoms. http://arXiv.org/abs/cond-mat/0501139v3[cond-mat.stat-mech], 2005

  24. Mishchenko Y., Chueng-Ryong Ji.: Int. J. Mod. Phys. A 20, 3488 (2005)

    Article  MATH  ADS  Google Scholar 

  25. Nešović, E., Petrović-Torgašev, M., Verstraelen, L.: Bolletino U. M. I. (8) 8-B, 685 (2005)

  26. Ody M.S., Ryder L.H.: Int. J. Mod. Phys. A 10, 337 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London-New York (1983)

    MATH  Google Scholar 

  28. Otsu H., Sato T., Ikemori H., Kitakado S.: JHEP 0507, 052 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Palais R.S.: Commun. Math. Phys. 69, 19 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Polyakov A.M.: Phys. Lett. B 103, 207 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  31. Polyakov A.M.: Phys. Lett. B 103, 211 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  32. Purkait S., Ray D.: Phys. Lett. A 116, 247 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  33. Schützhold R., Mostane S.: JETP Lett. 82, 248 (2005)

    Article  ADS  Google Scholar 

  34. Simons J.: Ann. Math. 88, 62 (1968)

    Article  MathSciNet  Google Scholar 

  35. Tseytlin A.A.: Phys. Lett. B 288, 279 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  36. Tseytlin A.A.: Phys. Rev. D 47, 3421 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tsurumaru T., Tsutsui I.: Phys. Lett. B 460, 94 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Vekslerchik V.E.: J. Phys. A: Math. Gen. 27, 6299 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  39. Weiner J.L.: Indiana Univ. Math. J. 27, 19 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  40. Willmore T.J.: Total Curvature in Riemannian Geometry. John Wiley and Sons, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ortega.

Additional information

Communicated by N. A. Nekrasov

This work was partially supported by MEC Grant MTM2007-60731 with FEDER funds and the Junta de Andalucía Grant PO6-FQM-01951.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, M., Caballero, M. & Ortega, M. Rotational Surfaces in \({\mathbb{L}^3}\) and Solutions of the Nonlinear Sigma Model. Commun. Math. Phys. 290, 437–477 (2009). https://doi.org/10.1007/s00220-009-0850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0850-0

Keywords

Navigation