Skip to main content
Log in

Rigorous Remarks about Scaling Laws in Turbulent Fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A definition of scaling law for suitable families of measures is given and investigated. First, a number of necessary conditions are proved. They imply the absence of scaling laws for 2D stochastic Navier-Stokes equations and for the stochastic Stokes (linear) problem in any dimension, while they imply a lower bound on the mean vortex stretching in 3D. Second, for the 3D stochastic Navier-Stokes equations, necessary and sufficient conditions for scaling laws to hold are given, translating the problem into bounds for energy and enstrophy of high and low modes respectively. Unlike in the 2D case, the validity or invalidity of such conditions in 3D remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge: Cambridge University Press, 1953

  2. Batchelor, G.K., Townsend, A.A.: Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. A 190(1023), 534–550 (1947)

    ADS  Google Scholar 

  3. Batchelor, G.K.: Computation of the energy spectrum in homogeneous, twodimensional turbulence. Phys. Fluids 12(2), 233–239 (1969)

    Article  ADS  Google Scholar 

  4. Chow, P.-L., Khasminskii, R.Z.: Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl. 15(5), 671–699 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantin, P., Foias, C., Manley, O.P.: Effects of the forcing function spectrum on the energy spectrum in 2-D turbulence. Phys. Fluids 6(1), 427–429 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Da Prato, G., Debussche, A.: Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9) 82(8), 877–947 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Fjørtoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow. Tellus 5, 225–230 (1953)

    Article  MathSciNet  Google Scholar 

  8. Flandoli, F.: An introduction to 3D stochastic fluid dynamics. In: CIME Lectures Series, 2005, available at http://web.math.Unifi.it/users/cime//

  9. Flandoli, F., Gątarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102(3), 367–391 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Flandoli, F., Gubinelli, M.: Statistics of a vortex filament model. Electron. J. Probab. 10(25), 865–900 (electronic) (2005)

    MathSciNet  Google Scholar 

  11. Foias, C., Jolly, M.S., Manley, O.P.: Kraichnan turbulence via finite time averages. Commun. Math. Phys. 255(2), 329–361 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Foias, C., Jolly, M.S., Manley, O.P., Rosa, R.: Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence. J. Stat. Phys. 108(3–4), 591–645 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  14. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164(3), 993–1032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. Roy. Soc. London Ser. A 434(1890), 9–13 (1991) (translated from the Russian by V. Levin)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. of Fluids 10(7), 1417–1423 (1967)

    Article  ADS  Google Scholar 

  18. Kuksin, S.B.: The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys. 115(1-2), 469–492 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Kupiainen, A.: Statistical theories of turbulence. In: Advances in Mathematical Sciences and Applications, Tokyo: Gakkotosho, 2003

  20. Lee, T.D.: Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J. Appl. Phys. 22(4), 524–524 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290–1294 (1965)

    Google Scholar 

  22. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

  23. Taylor, G.I.: Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A, 164(916), 15–23 (1938)

    ADS  MATH  Google Scholar 

  24. Taylor, G.I.: Observations and speculations on the nature of turbulence motion (1917). In: G.K. Batchelor, editor, Scientific Papers. Cambridge: Cambridge Univ. Press, 1971

  25. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A 158, 499–521 (1937)

    Article  ADS  Google Scholar 

  26. Temam, R.: Navier-Stokes Equations, Volume 2 of Studies in Mathematics and its Applications. Third ed., Amsterdam: North-Holland Publishing Co., 1984 (with an appendix by F. Thomasset)

  27. von Neumann, J.: Recent theories of turbulence (1949). In: edited by A.H. Taub, Collected Works, Volume VI, London: Pergamon Press, 1961, pp. 437–472

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romito.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flandoli, F., Gubinelli, M., Hairer, M. et al. Rigorous Remarks about Scaling Laws in Turbulent Fluids. Commun. Math. Phys. 278, 1–29 (2008). https://doi.org/10.1007/s00220-007-0398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0398-9

Keywords

Navigation