Skip to main content
Log in

Functional Integral Construction of the Massive Thirring model: Verification of Axioms and Massless Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a complete construction of a Quantum Field Theory for the Massive Thirring model by following a functional integral approach. This is done by introducing an ultraviolet and an infrared cutoff and by proving that, if the “bare” parameters are suitably chosen, the Schwinger functions have a well defined limit satisfying the Osterwalder-Schrader axioms, when the cutoffs are removed. Our results, which are restricted to weak coupling, are uniform in the value of the mass. The control of the effective coupling (which is the main ingredient of the proof) is achieved by using the Ward Identities of the massless model, in the approximated form they take in the presence of the cutoffs. As a byproduct, we show that, when the cutoffs are removed, theWard Identities have anomalies which are not linear in the bare coupling. Moreover, we find for the interacting propagator of the massless theory a closed equation which is different from that usually stated in the physical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler S.L., Bardeen W.A. (1969). Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182: 1517–1536

    Article  ADS  Google Scholar 

  2. Akiyama A., Futami Y. (1992). Two-fermion-loop contribution to the axial anomaly in the massive Thirring model. Phys. Rev. D 46: 798–805

    Article  ADS  Google Scholar 

  3. Benfatto G., Mastropietro V. (2001). Renormalization group, hidden symmetries and approximate Ward identities in the xyz model. Rev. Math. Phys. 13: 1323–1435

    Article  MATH  MathSciNet  Google Scholar 

  4. Benfatto G., Mastropietro V. (2002). On the density–density critical indices in interacting Fermi systems. Commun. Math. Phys. 231: 97–134

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Benfatto G., Mastropietro V. (2004). Ward identities and vanishing of the Beta function for d = 1 interacting Fermi systems. J. Stat. Phys. 115: 143–184

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Benfatto G., Mastropietro V. (2005). Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258: 609–655

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bergknoff H., Thacker H. (1979). Structure and solution of the massive Thirring model. Phys. Rev. D 19: 3666–3679

    Article  ADS  MathSciNet  Google Scholar 

  8. Coleman S. (1975). Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11: 2088–2097

    Article  ADS  Google Scholar 

  9. Cooper, A., Rosen, L.: The weakly coupled Yukawa z field theory: cluster expansion and Wightman axioms. Trans. Am. Math. Soc. 234, 1 (1977)

    Google Scholar 

  10. Carey A.L., Ruijsenaars S.N.M., Wright J.D. (1985). The massless Thirring model: Positivity of Klaiber’s n-point functions. Commun. Math. Phys. 99: 347–364

    Article  ADS  MathSciNet  Google Scholar 

  11. Dimock J. (1998). Bosonization of Massive Fermions. Commun. Math. Phys. 198: 247–281

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dell’Antonio G., Frishman Y., Zwanziger D. (1972). Thirring Model in Terms of Currents: Solution and Light–Cone Expansions. Phys. Rev. D 6: 988–1007

    Article  ADS  Google Scholar 

  13. Disertori M., Rivasseau V. (2000). Interacting Fermi Liquid in Two Dimensions at Finite Temperature. Commun. Math. Phys. 215: 251–290

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Furuya K., Gamboa Saravi S., Schaposnik F.A. (1982). Path integral formulation of chiral invariant fermion models in two dimensions. Nucl. Phys. B 208: 159–181

    Article  ADS  MathSciNet  Google Scholar 

  15. Feldman J., Magnen J., Rivasseau V., Sénéor R. (1986). Massive Gross–Neveu Model: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103: 67–103

    Article  MATH  ADS  Google Scholar 

  16. Fröhlich J., Seiler E. (1976). The massive Thirring-Schwinger model (QED2): convergence of perturbation theory and particle structure. Helv. Phys. Acta 49: 889–924

    MathSciNet  Google Scholar 

  17. Gallavotti G. (1985). Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57: 471–562

    Article  ADS  MathSciNet  Google Scholar 

  18. Gawedzki K., Kupiainen A. (1985). Gross–Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102: 1–30

    Article  ADS  MathSciNet  Google Scholar 

  19. Gomes M., Lowenstein J.H. (1972). Asymptotic scale invariance in a massive Thirring model. Nucl. Phys. B 45: 252–266

    Article  ADS  Google Scholar 

  20. Georgi H., Rawls J.M. (1971). Anomalies of the Axial Vector Current in Two Dimensions. Phys. Rev. D 3: 874–879

    Article  ADS  Google Scholar 

  21. Giuliani A., Mastropietro V. (2005). Anomalous Universality in the anisctropic Ashkin-Teller model. Commun. Math. Phys. 256: 687–735

    Article  MathSciNet  ADS  Google Scholar 

  22. Johnson K. (1961). Solution of the Equations for the Green’s Functions of a two Dimensional Relativistic Field Theory. Nuovo Cimento 20: 773–790

    Article  Google Scholar 

  23. Klaiber, B.: The Thirring model. In: Quantum theory and statistical physics, Vol X, A, Barut, A.O., Brittin, W.F., editors. London Gordon and Breach, 1968

  24. Lesniewski A. (1987). Effective action for the Yukawa2 quantum field theory. Commun. Math. Phys. 108: 437–467

    Article  ADS  MathSciNet  Google Scholar 

  25. Mastropietro, V., et al.: http://laroiv.org/list.hep-th/0607043

  26. Montvay I., Münster G. (1994). Quantum Fields on a Lattice. Cambridge University Press, Cambridge

    Google Scholar 

  27. Osterwalder K., Schrader R. (1973). Axioms for Euclidean Green’s Functions. Commun. Math. Phys. 31: 83–112

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Osterwalder K., Schrader R. (1975). Axioms for Euclidean Green’s Functions II. Commun. Math. Phys. 42: 281–305

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Osterwalder K., Seiler E. (1978). Gauge Field Theories on a Lattice. Ann. Phys. 110: 440–471

    Article  ADS  MathSciNet  Google Scholar 

  30. Seiler E. (1980). Phys. Rev. D 22: 2412–2418

    Article  ADS  MathSciNet  Google Scholar 

  31. Smirnov F.A. (1992). “Form factors in completely integrable models of quantum field theory”. World Sci., Singapore

    Google Scholar 

  32. Seiler R., Uhlenbrock D.A. (1977). On the massive Thirring model. Ann. Physics 105: 81–110

    Article  ADS  MathSciNet  Google Scholar 

  33. Thirring W. (1958). A soluble relativistic field theory. Ann. Phys. 3: 91–112

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Wilson K.G. (1969). Non–Lagrangian Models of Current Algebra. Phys. Rev. 179: 1499–1512

    Article  ADS  MathSciNet  Google Scholar 

  35. Wightman, A.S.: Cargese lectures, 1964, New York: Gorden and Beach,

  36. Zamolodchikov Alexander B., Zamolodchikov Alexey B. (1979). Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Physics 120: 253–291

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mastropietro.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfatto, G., Falco, P. & Mastropietro, V. Functional Integral Construction of the Massive Thirring model: Verification of Axioms and Massless Limit. Commun. Math. Phys. 273, 67–118 (2007). https://doi.org/10.1007/s00220-007-0254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0254-y

Keywords

Navigation