Skip to main content
Log in

Anti-self-dual Conformal Structures with Null Killing Vectors from Projective Structures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using twistor methods, we explicitly construct all local forms of four–dimensional real analytic neutral signature anti–self–dual conformal structures (M, [g]) with a null conformal Killing vector. We show that M is foliated by anti-self-dual null surfaces, and the two-dimensional leaf space inherits a natural projective structure. The twistor space of this projective structure is the quotient of the twistor space of (M, [g]) by the group action induced by the conformal Killing vector.

We obtain a local classification which branches according to whether or not the conformal Killing vector is hyper-surface orthogonal in (M, [g]). We give examples of conformal classes which contain Ricci–flat metrics on compact complex surfaces and discuss other conformal classes with no Ricci–flat metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J., Gibbons G.W., Perry M.J., Pope C.N., Ruback P.J. (1994). Kleinian geometry and the N = 2 superstring. Int. J. Mod. Phys. A. 9: 1457–1494

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bryant, R., Griffiths, P., Hsu, L.: Toward a Geometry of Differential Equations. In: Geometry, Topology, and Physics, Conf. Proc. Lecture Notes Geom. Topology, edited by S.-T. Yau, Vol. IV, Cambridge, MA: Internat. Press, 1995, pp. 1–76

  3. Calderbank, D.: Selfdual 4-manifolds, projective structures, and the Dunajski-West construction. http://arxiv.org/list/math.DG/0606754, 2006

  4. Calderbank, D.: Integrable Background Geometries. Preprint, 2002

  5. Dunajski M. (1999). The twisted photon associated to hyper-Hermitian four-manifolds. J. Geom. Phys. 30: 266–281

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Dunajski M. (2002). Anti-self dual four-manifolds with a parallel real spinor. Proc. R. Soc. Lond. A 458: 1205–1222

    MATH  ADS  MathSciNet  Google Scholar 

  7. Dunajski M., Mason L.J., Tod K.P. (2001). Einstein–Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 37: 63–92

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Finley, III, J.D., Plebański, J.F.: The classification of all \({\mathcal{H}}\) spaces admitting a Killing vector. J. Math. Phys. 20, 1938–1945

  9. Fino A., Pedersen H., Poon Y-S., Sorensen M.W. (2004). Neutral Calabi-Yau structures on Kodaira manifolds. Commun. Math. Phys. 248: 255–268

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Graham C.R. (1987). On Sparling’s characterization of Fefferman metrics. Am. J. Math. 109: 853–74

    Article  MATH  Google Scholar 

  11. Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Twistor Geometry and Non-Linear Systems Lecture Notes in Mathematics, Vol. 970, Berlin-Heidelberg-New York: Springer Verlag, 1982

  12. Ivanov S., Zamkovoy S. (2005). Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23: 205–234

    Article  MATH  MathSciNet  Google Scholar 

  13. Jones P., Tod K.P. (1985). Mini twistor spaces and Einstein-Weyl spaces. Class. Quant. Grav. 2: 565–577

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Julia B., Nicolai H. (1995). Null-Killing vector reduction and Galilean geometrodynamics. Nucl. Phys. B 439: 291–323

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kamada H. (1999). Neutral hyper-Kahler structures on primary Kodaira surfaces. Tsukuba J. Math. 23: 321–332

    MATH  MathSciNet  Google Scholar 

  16. Law, P.: Classification of the Weyl curvature spinors of neutral metrics in four dimensions. To be published in J. Geom. Phys., 2006

  17. LeBrun, C.: Spaces of Complex Geodesics and Related Structures. D. Phil thesis, Oxford University, 1980

  18. LeBrun, C., Mason, L.J.: Nonlinear Gravitons, Null Geodesics and Holomorphic Discs. http://arxiv.org/list/math.DG/0504582, 2005

  19. Mason, L.J., Woodhouse, N.M.J.: Integrability, self-duality and twistor theory. LMS Monographs New Series, Vol. 15. Oxford: Oxford University Press, 1996

  20. Nurowski P., Sparling G.A.J. (2003). Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations. Class. Quant. Grav. 20: 4995–5016

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Penrose R. (1976). Nonlinear gravitons and curved twistor theory. Gen. Relat. Grav. 7: 31–52

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Penrose R., Rindler W. (1986). Spinors and space-time, Vols 1 & 2. Cambridge University Press, Cambridge

    Google Scholar 

  23. Plebanski J.F. (1975). Some solutions of complex Einstein equations. J. Math. Phys. 12: 2395–2402

    Article  ADS  MathSciNet  Google Scholar 

  24. Sparling G.A.J., Tod K.P. (1981). An example of an H-Space. J. Math. Phys. 22: 331–332

    Article  ADS  MathSciNet  Google Scholar 

  25. Szekeres P. (1963). Spaces conformal to a class of spaces in general relativity. Proc. R. Soc. London A 274: 206–212

    MATH  ADS  MathSciNet  Google Scholar 

  26. Tafel J., Wójcik D. (1988). Null Killing vectors and reductions of the self-duality equations. Nonlinearity 11: 835–844

    Article  ADS  Google Scholar 

  27. Tafel J. (1993). Two-dimensional reductions of the self-dual Yang-Mills equations in self-dual spaces. J. Math. Phys. 34: 1892–1907

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Ward R.S. (1978). A class of self-dual solutions of Einstein’s equations. Proc. R. Soc. London A 363: 289–295

    Article  MATH  ADS  Google Scholar 

  29. Ward R.S. (1985). Integrable and solvable systems and relations among them. Phil. Trans. R. Soc. A 315: 451–457

    MATH  ADS  Google Scholar 

  30. Ward R.S. (1990). Einstein–Weyl spaces and \({SU(\infty)}\) Toda fields. Class. Quantum Grav. 7: L95–L98

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Dunajski.

Additional information

Communicated by G.W. Gibbons

Dedicated to the memory of Jerzy Plebański

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunajski, M., West, S. Anti-self-dual Conformal Structures with Null Killing Vectors from Projective Structures. Commun. Math. Phys. 272, 85–118 (2007). https://doi.org/10.1007/s00220-007-0208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0208-4

Keywords

Navigation