Skip to main content
Log in

On Eta-Einstein Sasakian Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A compact quasi-regular Sasakian manifold M is foliated by one-dimensional leaves and the transverse space of this characteristic foliation is necessarily a compact Kähler orbifold . In the case when the transverse space is also Einstein the corresponding Sasakian manifold M is said to be Sasakian η-Einstein. In this article we study η-Einstein geometry as a class of distinguished Riemannian metrics on contact metric manifolds. In particular, we use a previous solution of the Calabi problem in the context of Sasakian geometry to prove the existence of η-Einstein structures on many different compact manifolds, including exotic spheres. We also relate these results to the existence of Einstein-Weyl and Lorenzian Sasakian-Einstein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønneson-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry, II. Global Classification. J. Diff. Geom 68, 277–345 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampere equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 252, New York: Springer-Verlag, 1982

  3. Baily, W.L.: On the imbedding of V-manifolds in projective space. Amer. J. Math. 79, 403–430 (1957)

    MATH  MathSciNet  Google Scholar 

  4. Barden, D.: Simply connected five-manifolds. Ann. of Math. (2) 82, 365–385 (1965)

    Google Scholar 

  5. Baum, H.: Twistor and Killing spinors in Lorentzian geometry. In: Global analysis and harmonic analysis (Marseille-Luminy, 1999), Sémin. Congr., Vol. 4, Paris: Soc. Math. France, 2000, pp. 35–52

  6. Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, no. 1, 1–40 (2000)

    Google Scholar 

  7. Belgun, F.A.: Normal CR structures on compact 3-manifolds. Math. Z. 238, no. 3, 441–460 (2001)

  8. Boyer, C.P., Galicki K.: On Sasakian-Einstein geometry. Internat. J. Math. 11, no. 7, 873–909 (2000)

    Google Scholar 

  9. Boyer, C.P., Galicki K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, no. 8, 2419–2430 (electronic) (2001)

  10. Boyer, C.P., Galicki K.: New Einstein metrics in dimension five. J. Diff. Geom. 57, no. 3, 443–463 (2001)

    Google Scholar 

  11. Boyer, C.P., Galicki K.: Einstein Metrics on Rational Homology Spheres. http://arxiv.org/ list/math.DG/0311355, 2003

  12. Boyer, C.P., Galicki K., Kollár J.: Einstein Metrics on Spheres. Ann. of Math. 2, no. 162, 557–580 (2005)

    Google Scholar 

  13. Boyer, C.P., Galicki K., Kollár J., Thomas E.: Einstein Metrics on Exotic Spheres in Dimensions 7,11, and 15. Experimental Mathematics 14, 59–64 (2005)

    MathSciNet  Google Scholar 

  14. Boyer, C.P., Galicki K., Nakamaye M.: On positive Sasakian geometry. Geom. Dedicata 101, 93–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Boyer, C.P., Galicki K., Nakamaye M.: On the geometry of Sasakian-Einstein 5-manifolds. Math. Ann. 325, no. 3, 485–524 (2003)

    Google Scholar 

  16. Boyer, C.P., Galicki K., Nakamaye M.: Sasakian geometry, homotopy spheres and positive Ricci curvature. Topology 42, no. 5, 981–1002 (2003)

    Google Scholar 

  17. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, Vol. 203, Boston, MA: Birkhäuser Boston Inc., 2002

  18. Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45, no. 3–4, 285–308 (2003)

  19. Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 4, Berlin: Springer-Verlag, 1984

  20. Brieskorn, E.: Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2, 1–14 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Candelas, P., Lynker, M., Schimmrigk, R.: Calabi-Yau manifolds in weighted P 4. Nucl. Phys. B 341, no. 2, 383–402 (1990)

    Google Scholar 

  22. Calderbank, D.M.J., Pedersen, H.: Einstein-Weyl geometry. In: Surveys in differential geometry: essays on Einstein manifolds. Surv. Differ. Geom., VI, Boston, MA: Int. Press, 1999, pp. 387–423

  23. Cheeger, J., Tian, G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118, no. 3, 493–571 (1994)

    Google Scholar 

  24. El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compositio Math. 73, no. 1, 57–106 (1990)

  25. Fintushel, R., Stern, R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. London Math. Soc. (3) 61, no. 1, 109–137 (1990)

  26. Gauduchon, P.: Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S 1× S 3. J. Reine Angew. Math. 469, 1–50 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Geiges, H.: Normal contact structures on 3-manifolds. Tohoku Math. J. (2) 49, no. 3, 415–422 (1997)

  28. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley-Interscience [John Wiley & Sons], 1978, Pure and Applied Mathematics

  29. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, W.: Sasaki-Einstein metrics on S 2× S 3. Adv. Theor. Phys. 8, 711–734 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, W.: A new infinite class of Sasaki- Einstein manifolds. Adv. Theor. Math. Phys. 8, no. 6

  31. Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble) 48, no. 4, 1107–1127 (1998)

    Google Scholar 

  32. Gray, J.W.: Some global properties of contact structures. Ann. of Math. (2) 69, 421–450, (1959)

    Google Scholar 

  33. Guilfoyle, B.S.: The local moduli of Sasakian 3-manifolds. Int. J. Math. Math. Sci. 32, no. 2, 117–127 (2002)

    Google Scholar 

  34. Higa, T.: Weyl manifolds and Einstein-Weyl manifolds. Comment. Math. Univ. St. Paul. 42, no. 2, 143–160 (1993)

  35. Hwang, A.D., Simanca, S.R.: Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics. Math. Ann. 309, no. 1, 97–106 (1997)

    Google Scholar 

  36. Iano-Fletcher, A.R.: Working with weighted complete intersections. In: Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., Vol. 281, Cambridge: Cambridge Univ. Press, 2000, pp. 101–173

  37. Johnson, J.M., Kollár, J.: Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces. Ann. Inst. Fourier (Grenoble) 51, no. 1, 69–79 (2001)

    Google Scholar 

  38. Kollár, J.: Einstein metrics on 5-dimensional Seifert bundles. http://arxiv.org/list/ math.DG/0408184, 2004

  39. Kollár, J.: Einstein metrics on connected sums of S 2× S 3. http://arxiv.org/list/math.DG/ 0402141, 2004

  40. Klebanov, I.R., Witten, E.: Superconformal field theory on threebranes at a Calabi-Yau singularity. Nucl. Phys. B 536, no. 1–2, 199–218 (1999)

  41. Maldacena, J.: The large-N limit of superconformal field theories and supergravity. Internat. J. Theoret. Phys. 38, no. 4, 1113–1133 (1999) Quantum gravity in the southern cone (Bariloche, 1998)

  42. Matzeu, P.: Some examples of Einstein-Weyl structures on almost contact manifolds. Class. Quantum Gravity 17, no. 24, 5079–5087 (2000)

    Google Scholar 

  43. Matzeu, P.: Almost contact Einstein-Weyl structures. Manus. Math. 108, no. 3, 275–288 (2002)

    Google Scholar 

  44. Milnor, J.: On the 3-dimensional Brieskorn manifolds M(p,q,r). In: Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton, NJ: Princeton Univ. Press, 1975, pp. 175–225

  45. Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials. Topology 9, 385–393 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  46. Moroianu, A.: Parallel and Killing spinors on Spin c manifolds. Commun. Math. Phys. 187, no. 2, 417–427 (1997)

  47. Martelli, D., Sparks, J.: Toric geometry, Sasaki-Einstein manifolds and a new infinite class of ads/cft duals. Commun. Math. Phys., to appear, http://arxiv.org/list/th/0411238, 2004

  48. Martelli, D.D., Sparks, J., Yau, S.-T.: The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds. http://arxiv.org/list/hep-th/0503183, 2005

  49. Narita, F.: Riemannian submersion with isometric reflections with respect to the fibers. Kodai Math. J. 16, no. 3, 416–427 (1993)

    Google Scholar 

  50. Narita, F.: Riemannian submersions and Riemannian manifolds with Einstein-Weyl structures. Geom. Dedicata 65, no. 1, 103–116 (1997)

  51. Narita, F.: Einstein-Weyl structures on almost contact metric manifolds. Tsukuba J. Math. 22, no. 1, 87–98 (1998)

    Google Scholar 

  52. Okumura, M.: Some remarks on space with a certain contact structure. Tôhoku Math. J. (2) 14, 135–145 (1962)

    Google Scholar 

  53. Orlik, P.: Weighted homogeneous polynomials and fundamental groups.Topology 9, 267–273 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  54. Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, Vol. 171, New York: Springer-Verlag, 1998

  55. Pedersen, H., Swann, A.: Riemannian submersions, four-manifolds and Einstein-Weyl geometry. Proc. London Math. Soc. (3) 66, no. 2, 381–399 (1993)

  56. Reid, M.: Canonical 3-folds. Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Alphen aan den Rijn: Sijthoff & Noordhoff, 1980, pp. 273–310

  57. Saeki, O.: Knotted homology spheres defined by weighted homogeneous polynomials. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, no. 1, 43–50 (1987)

    Google Scholar 

  58. Sasaki, S.: Almost Contact Manifolds, Part 1. Lecture Notes, Mathematical Institute, Tôhoku University, 1965

  59. Sasaki, S.: Almost Contact Manifolds, Part 3. Lecture Notes, Mathematical Institute, Tôhoku University, 1968

  60. Saveliev, N.: Invariants for homology 3-spheres. Encyclopaedia of Mathematical Sciences, Vol. 140, Low-Dimensional Topology, 1, Berlin: Springer-Verlag, 2002

  61. Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15, no. 5, 401–487 (1983)

    Google Scholar 

  62. Smale, S.: On the structure of 5-manifolds. Ann. of Math. (2) 75, 38–46 (1962)

    Google Scholar 

  63. Takahashi, T.: Deformations of Sasakian structures and its application to the Brieskorn manifolds. Tôhoku Math. J. (2) 30, no. 1, 37–43 (1978)

  64. Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  65. Tanno, S.: Sasakian manifolds with constant φ-holomorphic sectional curvature. Tôhoku Math. J. (2) 21, 501–507 (1969)

    Google Scholar 

  66. Tanno, S.: Geodesic flows on C L -manifolds and Einstein metrics on S 3× S 2. In: Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), Amsterdam: North-Holland, 1979, pp. 283–292

  67. Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, Vol. 35, Princeton, NJ: Princeton University Press, 1997, edited by Silvio Levy

  68. Tondeur, P.: Geometry of foliations. Monographs in Mathematics, Vol. 90, Basel: Birkhäuser Verlag, 1997

  69. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, no. 3, 339–411 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Boyer.

Additional information

Communicated by G.W. Gibbons

Krzysztof Galicki: On leave from Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA. E-mail: galicki@math.unm.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, C., Galicki, K. & Matzeu, P. On Eta-Einstein Sasakian Geometry. Commun. Math. Phys. 262, 177–208 (2006). https://doi.org/10.1007/s00220-005-1459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1459-6

Keywords

Navigation