Skip to main content
Log in

Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let be a domain of . In Part 1 of this paper, we introduce new tools in order to analyse the local behavior of the boundary of . Classifications based on geometric accessibility conditions are introduced and compared; they are related to analytic criteria based either on local Lp regularity of the characteristic function or on its wavelet coefficients. Part 2 deals with the global analysis of the boundary of . We develop methods for determining the dimensions of the sets where the local behaviors previously introduced occur. These methods are based on analogies with the thermodynamic formalism in statistical physics and lead to new classification tools for fractal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data. In: The Science of Disasters; Bunde, A., Kropp, J., Schellnhuber, H. J. (eds.), Berlin-Heidelberg-New York: Springer, 2002; pp. 27–102

  2. Arneodo, A., Bacry, E., Jaffard, S., Muzy, J-F.: Oscillating singularities on Cantor sets: A grandcanonical multifractal formalism. J. Stat. Phys. 87, 179–209 (1997)

    Google Scholar 

  3. Arneodo, A., Bacry, E., Muzy, J-F.: The thermodynamics of fractals revisited with wavelets. Physica A 213, 232–275 (1995)

    Google Scholar 

  4. Aubry, J.-M., Jaffard, S.: Random wavelet series. Commun. Math. Phys. 227, 483–514 (2002)

    Article  Google Scholar 

  5. Calderòn, A. P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–227 (1961)

    Google Scholar 

  6. Catrakis, H. J., Dimotakis, P. E.: Mixing in turbulent jets: scalar measures and isosurface geometry. J. Fluid Mech. 316, 369–406 (1996)

    Google Scholar 

  7. Dalang, R., Walsh, J.: Geography of the level sets of the Brownian sheet. Prob. Th. Rel. Fields, 96(2), 153–176 (1993)

    Google Scholar 

  8. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure and App. Math. 41, 909–996 (1988)

    Google Scholar 

  9. Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J.F., Wehbi, D.: Evaluating the fractal dimension of surfaces. Proc. R. Soc. Lond. A 425, 113–127 (1989)

    Google Scholar 

  10. Falconer, K.: Fractal geometry. New York: John Wiley and Sons, 1990

  11. Gousseau, Y.: Distribution de formes dans les images naturelles. Thèse de l’Université Paris- Dauphine, 2000

  12. Gouyet, J.-F., Russo, M., Sapoval, B.: Fractal surfaces and interfaces. In: Bunde, A., (ed.), Fractals and disordered systems. Berlin-Heidelberg-New York: Springer Verlag, 1996

  13. Guiheneuf, B., Jaffard, S., Lévy-Véhel, J.: Two results concerning Chirps and 2-microlocal exponents prescription. App. Comput. Harm. Anal. 5(4), 487–492 (1998)

    Article  Google Scholar 

  14. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publ. Mat. 35, 155–168 (1991)

    Google Scholar 

  15. Jaffard, S.: Multifractal formalism for functions. Part 1: Results valid for all functions and Part 2: Selfsimilar functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  Google Scholar 

  16. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillation of functions. Mem. Am. Math. Soc. 123, 587 (1996)

    Google Scholar 

  17. Jaffard, S., Meyer, Y., Ryan, R.: Wavelets: Tools for Science and Technology. Philadelphia, PA: S.I.A.M., 2001

  18. Mallat, S.: A Wavelet tour of signal processing. London-New York: Academic Press, 1998

  19. Mandelbrot, B.: On the geometry of homogeneous turbulence with stress on the fractal dimension of the isosurfaces of scalars. J. Fluid Dyn. 72, 401–416 (1975)

    Google Scholar 

  20. Melot, C.: Sur les singularités oscillantes et le formalisme multifractal. Thèse de l’Université Paris XII, 2002

  21. Meneveau, C., Sreenivasan, K.: Interface dimension in intermittent turbulence. Phys. Rev A 41(4), 2246–2248 (1990)

    Article  Google Scholar 

  22. Meyer, Y.: Principe d’incertitude, bases Hilbertiennes et algèbres d’opérateurs. Séminaire Bourbaki, n. 662 (Fev. 1986)

  23. Meyer, Y.: Ondelettes et opérateurs. Paris: Hermann, 1990

  24. Meyer, Y.: Wavelets, Vibrations and Scalings. CRM Ser. AMS, Vol. 9, Montréal: Presses de l’Université de Montréal, 1998

  25. Meyer, Y., Xu, H.: Wavelet analysis and chirps. Appl. Comput. Harmon. Anal. 4(4), 366–379 (1997)

    Article  Google Scholar 

  26. Mimouni, S.: Analyse fractale d’interfaces pour les instabilités de Raleigh-Taylor. Thèse de l’Ecole Polytechnique, 1995

  27. Mimouni, S., Laval, G., Scheurer, B.: Fractal interface. EUROTHERM Seminar 39, Nantes, 1994

  28. Mimouni, S., Laval, G., Scheurer, B., Jaffard, S.: Morphology of the mixing layer in the Raleigh-Taylor instability. In: Small scale structures in three-dimensional hydrodynamics and magnetohydrodynamic turbulence; Springer, Lect. Notes in Phys. 462, Berlin-Heidelberg-New York: Springer, 1995; pp. 179–192

  29. Moffat, H. K.: Simple topological aspects of turbulence velocity dynamics. In: Proc. IUTAM Symp. on Turbulence and Chaotic Phenomena in Fluids, ed. Tatsumi Amsterdam: Elsevier/North Holland, 1984, p. 223ff

  30. Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence, Appendix to Fully developed turbulence and intermittency, by U. Frisch, Proc. Int. Summer School Phys. Enrico Fermi, Amsterdam: North Holland, 1985, pp. 84–88

  31. Redondo, J. M.: Fractal models of density interfaces. In: IMA Conf. Ser. 13, Frage, M., Hunt, J.C.R., Vassilicos, J. C. (eds.) Oxford: Clarendon Press/Elsevier, 1993; pp. 353–370

  32. Sapoval, B.: Universalités et fractales, Paris: Flammarion, 1997

  33. Saether, G., Bendiksen, K., Muller, J., Frøland, E.: The fractal dimension of oil-water interfaces in channel flows. In: IMA Conf. Ser. 13, Frage, M., Hunt, J.C.R., Vassilicos, J. C. (eds.) Oxford: Clarendon Press/Elsevier, 1993, pp. 371–378

  34. Sethian, J. A.: Level Set Methods: Evolving interfaces in geometry, fluid mechanics, computer vision and material sciences. Cambridge: Cambridge University Press, 1996

  35. Vassilicos, J.C.: The multispiral model of turbulence and intermitency. Moffat, H.K. et al. ed. Topological aspects of the dynamics of fluids and plasmas, Kluwer acad. pub., 1992, pp. 427–442

  36. Vassilicos, J.C., Hunt, J.C.R.: Fractal dimensions and spectra of interfaces with application to turbulence. Proc. Roy. Soc. Series A, 435(1895), 505–534 (1991)

    Google Scholar 

  37. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Prob. Th. Rel. Fields, 109(1), 129–157 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Jaffard.

Additional information

Communicated by M. B. Ruskai

The first author is supported by the Institut Universitaire de France.

This work was performed while the second author was at the Laboratoire d’Analyse et de Mathématiques Appliquées (University Paris XII, France) and at the Istituto di Matematica Applicata e Tecnologie Informatiche (Pavia, Italy) and partially supported by the Société de Secours des amis des Sciences and the TMR Research Network “Breaking Complexity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffard, S., Mélot, C. Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents. Commun. Math. Phys. 258, 513–539 (2005). https://doi.org/10.1007/s00220-005-1354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1354-1

Keywords

Navigation