Skip to main content
Log in

Characterization and anti-oxidant potential of polyphenolic biomarker compounds of Indian propolis: a multivariate and ANN-based approach

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The current investigation emphasizes the characterization of polyphenolic compounds, antioxidant potential, and mapping of biomarkers in propolis samples acquired from India. LC-ESI-QTOF-MS discovered 67 phytocompounds, including 39 flavonoids, 20 phenolic acids and their derivatives, along with carotenoids and phytosterols in northern Indian propolis. Compounds like: proanthocyanidins, iso-flavonoids, carotenoids, and phytosterols were only detected in particular region samples, recognized as biomarker compounds of specific locations. The spectrophotometric analysis quantified a higher concentration of total flavonoids (TFC) than total phenolic content (TPC) in propolis samples ranging from 228.76 and 214.62 mg QU/g and 137.02–122.13 mg GAE/g, respectively. In addition, antioxidant potential was confirmed highest in Himachal Pradesh propolis (HPP). Total antioxidant capacity (64.91 \(\pm 0.27\) mg Vit C/g), DPPH radical scavenging activity (94.76\(\hspace{0.17em}\pm \hspace{0.17em}0.88\)%), and FRAP (2.25 \(\pm 0.05\) mmol Fe2+/g) but lowest in Rajasthan propolis (RP). Further, HPLC estimated the highest concentration of beta-carotene (217.44 ± 0.58 mg/g) and galangin (184.63 ± 0.75 mg/g) in RP, whereas caffeic acid phenethyl ester (CAPE, 174.65 ± 0.84 mg/g) was highest in HPP samples. Moreover, the antioxidant potency of extracts was efficiently forecasted with TPC, TFC, CAPE, galangin, and beta-carotene concentration using the artificial neural network. Furthermore, principal component analysis recognized three principal components, revealed 98.1% of the variation and well established the dissimilarities in Indian propolis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Date availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Fardet A (2016) Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 7:2338–2346. https://doi.org/10.1039/C6FO00107F

    Article  CAS  PubMed  Google Scholar 

  2. Pant K, Thakur M, Chopra HK et al (2022) Assessment of fatty acids, amino acids, minerals, and thermal properties of bee propolis from Northern India using a multivariate approach. J Food Compos Anal 111:104624. https://doi.org/10.1016/j.jfca.2022.104624

    Article  CAS  Google Scholar 

  3. Anjum SI, Ullah A, Khan KA et al (2019) Composition and functional properties of propolis (bee glue): a review. Saudi J Biol Sci 26:1695–1703. https://doi.org/10.1016/j.sjbs.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  4. Vasilaki A, Hatzikamari M, Stagkos-Georgiadis A et al (2019) A natural approach in food preservation: propolis extract as sorbate alternative in non-carbonated beverage. Food Chem 298:125080. https://doi.org/10.1016/j.foodchem.2019.125080

    Article  CAS  PubMed  Google Scholar 

  5. Pobiega K, Kraśniewska K, Gniewosz M (2019) Application of propolis in antimicrobial and antioxidative protection of food quality—a review. Trends Food Sci Technol 83:53–62. https://doi.org/10.1016/j.tifs.2018.11.007

    Article  CAS  Google Scholar 

  6. Maruta H, He H (2020) PAK1-blockers: potential therapeutics against COVID-19. Med Drug Discov 6:100039. https://doi.org/10.1016/j.medidd.2020.100039

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Carvalho FMDA, Schneider JK, De Jesus CVF et al (2020) Brazilian red propolis: extracts production, physicochemical characterization, and cytotoxicity profile for antitumor activity. Biomolecules 10:726. https://doi.org/10.3390/biom10050726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galeotti F, Maccari F, Fachini A, Volpi N (2018) Chemical composition and antioxidant activity of propolis prepared in different forms and in different solvents useful for finished products. Foods 7:41. https://doi.org/10.3390/foods7030041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das Neves MVM, Da Silva TMS, Lima EDO et al (2016) Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Braz J Microbiol 47:159–166. https://doi.org/10.1016/j.bjm.2015.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maldonado L, Marcinkevicius K, Borelli R et al (2020) Differentiation of argentine propolis from different species of bees and geographical origins by UV spectroscopy and chemometric analysis. J Saudi Soc Agric Sci 19:185–191. https://doi.org/10.1016/j.jssas.2018.09.003

    Article  Google Scholar 

  11. El-Guendouz S, Lyoussi B, Miguel MG (2019) Insight on propolis from mediterranean countries: chemical composition biological activities and application fields. C&B. https://doi.org/10.1002/cbdv.201900094

    Article  Google Scholar 

  12. McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84. https://doi.org/10.1016/S0308-8146(00)00288-0

    Article  CAS  Google Scholar 

  13. Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339. https://doi.org/10.1016/S0308-8146(03)00216-4

    Article  CAS  Google Scholar 

  14. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  15. Kuś PM, Okińczyc P, Jakovljević M et al (2018) Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC–MS and UHPLC-DAD-QqTOF-MS. J Pharm Biomed Anal 158:15–27. https://doi.org/10.1016/j.jpba.2018.05.041

    Article  CAS  PubMed  Google Scholar 

  16. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  17. Martini S, Conte A, Tagliazucchi D (2017) Phenolic compounds profile and antioxidant properties of six sweet cherry ( Prunus avium) cultivars. Food Res Int 97:15–26. https://doi.org/10.1016/j.foodres.2017.03.030

    Article  CAS  PubMed  Google Scholar 

  18. Thakur M, Nanda V (2021) Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res Int 140:110041. https://doi.org/10.1016/j.foodres.2020.110041

    Article  CAS  PubMed  Google Scholar 

  19. Choi YM, Noh DO, Cho SY et al (2006) Antioxidant and antimicrobial activities of propolis from several regions of Korea. LWT Food Sci Technol 39:756–761. https://doi.org/10.1016/j.lwt.2005.05.015

    Article  CAS  Google Scholar 

  20. Ozdal T, Ceylan FD, Eroglu N et al (2019) Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res Int 122:528–536. https://doi.org/10.1016/j.foodres.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  21. Ahn M-R, Kumazawa S, Usui Y et al (2007) Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem 101:1383–1392. https://doi.org/10.1016/j.foodchem.2006.03.045

    Article  CAS  Google Scholar 

  22. Moreira L, Dias LG, Pereira JA, Estevinho L (2008) Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem Toxicol 46:3482–3485. https://doi.org/10.1016/j.fct.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  23. Kolaylı S, Birinci C, Kara Y et al (2023) A melissopalynological and chemical characterization of Anatolian propolis and an assessment of its antioxidant potential. Eur Food Res Technol 249:1213–1233. https://doi.org/10.1007/s00217-023-04208-x

    Article  CAS  Google Scholar 

  24. Hernández Zarate MS, Abraham Juárez MDR, Cerón García A et al (2018) Flavonoids, phenolic content, and antioxidant activity of propolis from various areas of Guanajuato, Mexico. Food Sci Technol 38:210–215. https://doi.org/10.1590/fst.29916

    Article  Google Scholar 

  25. Odunola O, Jo O, Gbadegesin M (2015) In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Phcog Res 7:49. https://doi.org/10.4103/0974-8490.147200

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tlak Gajger I, Pavlović I, Bojić M et al (2017) Components responsible for antimicrobial activity of propolis from continental and Mediterranean regions in Croatian. Czech J Food Sci 35:376–385. https://doi.org/10.17221/103/2017-CJFS

    Article  Google Scholar 

  27. Mašek T, Perin N, Racané L et al (2018) Chemical composition antioxidant and antibacterial activity of different extracts of poplar type propolis. Croat Chem Acta. https://doi.org/10.5562/cca3298

    Article  Google Scholar 

  28. Ncube EN, Mhlongo MI, Piater LA et al (2014) Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacumtissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent J 8:66. https://doi.org/10.1186/s13065-014-0066-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ristivojević P, Trifković J, Andrić F, Milojković-Opsenica D (2015) Poplar-type propolis: chemical composition, botanical origin and biological activity. Nat Prod Commun 10:1934578X1501001. https://doi.org/10.1177/1934578X1501001117

    Article  Google Scholar 

  30. Machado De-Melo AA, Almeida-Muradian LBD, Sancho MT, Pascual-Maté A (2018) Composition and properties of Apis mellifera honey: a review. J Apic Res 57:5–37. https://doi.org/10.1080/00218839.2017.1338444

    Article  Google Scholar 

  31. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  32. Falcão SI, Tomás A, Vale N et al (2013) Phenolic quantification and botanical origin of Portuguese propolis. Ind Crops Prod 49:805–812. https://doi.org/10.1016/j.indcrop.2013.07.021

    Article  CAS  Google Scholar 

  33. Boulekbache-Makhlouf L, Slimani S, Madani K (2013) Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Ind Crops Prod 41:85–89. https://doi.org/10.1016/j.indcrop.2012.04.019

    Article  CAS  Google Scholar 

  34. Hirano Y, Kondo R, Sakai K (2003) 5Α-Reductase inhibitory tannin-related compounds isolated from Shorea laeviforia. J Wood Sci 49:339–343. https://doi.org/10.1007/s10086-002-0481-y

    Article  CAS  Google Scholar 

  35. Kang J, Price WE, Ashton J et al (2016) Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem 211:215–226. https://doi.org/10.1016/j.foodchem.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  36. Bankova V, Popova M, Bogdanov S, Sabatini A-G (2002) Chemical composition of european propolis: expected and unexpected results. Zeitschrift für Naturforschung C 57:530–533. https://doi.org/10.1515/znc-2002-5-622

    Article  CAS  Google Scholar 

  37. Truchado P, Ferreres F, Tomas-Barberan FA (2009) Liquid chromatography–tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. J Chromatogr A 1216:7241–7248. https://doi.org/10.1016/j.chroma.2009.07.057

    Article  CAS  PubMed  Google Scholar 

  38. Haddouchi F, Chaouche TM, Ksouri R, Larbat R (2021) Leafy stems of Phagnalon saxatile subsp. saxatile from algeriaas a source of chlorogenic acids and flavonoids with antioxidant activity: characterization and quantification using UPLC-DAD-ESI-MSn. Metabolites 11:280. https://doi.org/10.3390/metabo11050280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. González-Martín M, Escuredo O, Revilla I et al (2015) Determination of the mineral composition and toxic element contents of propolis by near infrared spectroscopy. Sensors 15:27854–27868. https://doi.org/10.3390/s151127854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu F, Liu Y, Zhang Z et al (2009) Quasi-MSn identification of flavanone 7-glycoside isomers in Da Chengqi Tang by high performance liquid chromatography-tandem mass spectrometry. Chin Med 4:15. https://doi.org/10.1186/1749-8546-4-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alshehri MM, Sharifi-Rad J, Herrera-Bravo J et al (2021) Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid Med Cell Longev 2021:1–15. https://doi.org/10.1155/2021/6331630

    Article  CAS  Google Scholar 

  42. Rufatto LC, Luchtenberg P, Garcia C et al (2018) Brazilian red propolis: chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol Res 214:74–82. https://doi.org/10.1016/j.micres.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  43. Wang H-Y, Li T, Ji R et al (2019) Metabolites of medicarpin and their distributions in rats. Molecules 24:1966. https://doi.org/10.3390/molecules24101966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kečkeš S, Gašić U, Veličković TĆ et al (2013) The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem 138:32–40. https://doi.org/10.1016/j.foodchem.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  45. Arivalagan M, Roy TK, Yasmeen AM et al (2018) Extraction of phenolic compounds with antioxidant potential from coconut (Cocos nucifera L.) testa and identification of phenolic acids and flavonoids using UPLC coupled with TQD-MS/MS. LWT 92:116–126. https://doi.org/10.1016/j.lwt.2018.02.024

    Article  CAS  Google Scholar 

  46. Tan Z, Sun Y, Liu M et al (2020) Retracted: naringenin inhibits cell migration, invasion, and tumor growth by regulating circFOXM1/miR-3619-5p/SPAG5 axis in lung cancer. Cancer Biother Radiopharm 35:e826–e838. https://doi.org/10.1089/cbr.2019.3520

    Article  PubMed  Google Scholar 

  47. Anari E, Akbarzadeh A, Zarghami N (2016) RETRACTED ARTICLE: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells, Nanomed, Biotechnol 44:1410–1416. https://doi.org/10.3109/21691401.2015.1029633

    Article  CAS  PubMed  Google Scholar 

  48. Pellati F, Prencipe FP, Bertelli D, Benvenuti S (2013) An efficient chemical analysis of phenolic acids and flavonoids in raw propolis by microwave-assisted extraction combined with high-performance liquid chromatography using the fused-core technology. J Pharm Biomed Anal 81–82:126–132. https://doi.org/10.1016/j.jpba.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  49. Piccinelli AL, Mencherini T, Celano R et al (2013) Chemical composition and antioxidant activity of Algerian propolis. J Agric Food Chem 61:5080–5088. https://doi.org/10.1021/jf400779w

    Article  CAS  PubMed  Google Scholar 

  50. Castro C, Mura F, Valenzuela G et al (2014) Identification of phenolic compounds by HPLC-ESI-MS/MS and antioxidant activity from Chilean propolis. Food Res Int 64:873–879. https://doi.org/10.1016/j.foodres.2014.08.050

    Article  CAS  PubMed  Google Scholar 

  51. Karagecili H, Yılmaz MA, Ertürk A et al (2023) Comprehensive metabolite profiling of berdav propolis using LC-MS/MS: determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 28:1739. https://doi.org/10.3390/molecules28041739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ninomiya M, Koketsu M (2013) Minor flavonoids (chalcones, flavanones, dihydrochalcones, and aurones). In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1867–1900

    Chapter  Google Scholar 

  53. Madeo F, Carmona-Gutierrez D, Kepp O, Kroemer G (2018) Spermidine delays aging in humans. Aging 10:2209–2211. https://doi.org/10.18632/aging.101517

    Article  PubMed  PubMed Central  Google Scholar 

  54. Qiao J, Feng Z, Zhang Y et al (2023) Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem 405:134800. https://doi.org/10.1016/j.foodchem.2022.134800

    Article  CAS  PubMed  Google Scholar 

  55. Van Breemen RB, Dong L, Pajkovic ND (2012) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163–172. https://doi.org/10.1016/j.ijms.2011.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonamigo T, Campos JF, Alfredo TM et al (2017) Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides. Oxid Med Cell Longev 2017:1–12. https://doi.org/10.1155/2017/1038153

    Article  CAS  Google Scholar 

  57. Rozenberg R, Ruibal-Mendieta NL, Petitjean G et al (2003) Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS. J Cereal Sci 38:189–197. https://doi.org/10.1016/S0733-5210(03)00022-5

    Article  CAS  Google Scholar 

  58. Kruger MJ, Davies N, Myburgh KH, Lecour S (2014) Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int 59:41–52. https://doi.org/10.1016/j.foodres.2014.01.046

    Article  CAS  Google Scholar 

  59. Tan L, Jin Z, Ge Y et al (2020) Comprehensive ESI-Q TRAP-MS/MS based characterization of metabolome of two mango (Mangifera indica L) cultivars from China. Sci Rep 10:20017. https://doi.org/10.1038/s41598-020-75636-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garrido J, Gaspar A, Garrido EM et al (2012) Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie 94:961–967. https://doi.org/10.1016/j.biochi.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  61. Escriche I, Juan-Borrás M (2018) Standardizing the analysis of phenolic profile in propolis. Food Res Int 106:834–841. https://doi.org/10.1016/j.foodres.2018.01.055

    Article  CAS  PubMed  Google Scholar 

  62. Popova M, Trusheva B, Khismatullin R et al (2013) The triple botanical origin of Russian propolis from the perm region, its phenolic content and antimicrobial activity. Nat Prod Commun 8:1934578X1300800. https://doi.org/10.1177/1934578X1300800519

    Article  Google Scholar 

  63. Sun C, Wu Z, Wang Z, Zhang H (2015) Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid-Based Complement Altern Med 2015:1–9. https://doi.org/10.1155/2015/595393

    Article  Google Scholar 

  64. Mouhoubi-Tafinine Z, Ouchemoukh S, Tamendjari A (2016) Antioxydant activity of some Algerian honey and propolis. Ind Crops Prod 88:85–90. https://doi.org/10.1016/j.indcrop.2016.02.033

    Article  CAS  Google Scholar 

  65. Fanciullino A-L, Dhuique-Mayer C, Luro F et al (2006) Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agric Food Chem 54:4397–4406. https://doi.org/10.1021/jf0526644

    Article  CAS  PubMed  Google Scholar 

  66. Kubiliene L, Laugaliene V, Pavilonis A et al (2015) Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complement Altern Med 15:156. https://doi.org/10.1186/s12906-015-0677-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silva JC, Rodrigues S, Feás X, Estevinho LM (2012) Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem Toxicol 50:1790–1795. https://doi.org/10.1016/j.fct.2012.02.097

    Article  CAS  PubMed  Google Scholar 

  68. El-Zaeddi H, Calín-Sánchez Á, Nowicka P et al (2017) Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem 226:179–186. https://doi.org/10.1016/j.foodchem.2017.01.067

    Article  CAS  PubMed  Google Scholar 

  69. Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3:144–158. https://doi.org/10.1016/j.jff.2011.03.007

    Article  CAS  Google Scholar 

  70. Svečnjak L, Marijanović Z, Okińczyc P et al (2020) Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 9:337. https://doi.org/10.3390/antiox9040337

    Article  PubMed  Google Scholar 

  71. Saini RK, Yu J-W, Song M-H et al (2022) Profiling of Redox-Active Lipophilic Constituents in Leaf Mustard (Brassica juncea (L.) Czern.) Cultivars Using LC-MS and GC-MS. Antioxidants 11:2464. https://doi.org/10.3390/antiox11122464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakajima Y, Sato Y, Konishi T (2007) Antioxidant small phenolic ingredients in inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull 55:1222–1226. https://doi.org/10.1248/cpb.55.1222

    Article  CAS  Google Scholar 

  73. Urushisaki T, Takemura T, Tazawa S et al (2011) Caffeoylquinic acids are major constituents with potent anti-influenza effects in Brazilian green propolis water extract. Evid-Based Complement Altern Med 2011:1–7. https://doi.org/10.1155/2011/254914

    Article  Google Scholar 

  74. Kazemi M, Karim R, Mirhosseini H, Abdul Hamid A (2016) Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: punicalagin and hydroxybenzoic acids. Food Chem 206:156–166. https://doi.org/10.1016/j.foodchem.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  75. Moura SALD, Negri G, Salatino A, et al (2011) Aqueous extract of brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid-Based Complement Altern Med 2011:1–8. https://doi.org/10.1093/ecam/nep112

  76. Bajpai V, Singh A, Singh P et al (2018) Development of ultra performance liquid chromatography tandem mass spectrometry method for simultaneous identification and quantitation of potential osteogenic phytochemicals in Butea monosperma. J Chromatogr Sci 56:738–745. https://doi.org/10.1093/chromsci/bmy050

    Article  CAS  PubMed  Google Scholar 

  77. Jiang D, Rasul A, Batool R et al (2019) Potential anticancer properties and mechanisms of action of formononetin. BioMed Res Int 2019:1–11. https://doi.org/10.1155/2019/5854315

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Mr. Jagtar Singh—the progressive beekeeper for collection and donation of the bee propolis samples for current investigation. As well as a special thanks to Pratik Gorde for helping in ANN data modeling. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. In addition, no AI or AI-assisted tool has been used in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirty Pant.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, K., Chopra, H.K. & Nanda, V. Characterization and anti-oxidant potential of polyphenolic biomarker compounds of Indian propolis: a multivariate and ANN-based approach. Eur Food Res Technol 250, 253–271 (2024). https://doi.org/10.1007/s00217-023-04384-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04384-w

Keywords

Navigation